【Sqoop 入门 CentOS7】Sqoop-1.4.7 入门基础 2019.10.28

功能:将 结构化数据库 表对象,迁移(导入导出)到 Hadoop生态 上(的 大数据仓库),或反向
同样的,在迁移过程中,可以对数据进行操作,例如筛选

本质:就是 MapReduce 的 MapTask,将导入导出命令 转化为固定的 MapReduce 模板

注意:导入导出,是以 Hadoop生态 视角出发的,从Hadoop生态导出,导入到Hadoop生态
这个框架还比较简单,处于起步的顶级项目,功能也不是很完善,尤其是不存在则创建表功能8行。

资源

Sqoop官网:http://sqoop.apache.org/
官·下载地址:http://www.apache.org/dyn/closer.lua/sqoop/1.4.7
官·文档:http://sqoop.apache.org/docs/1.4.7/index.html

安装测试

下载解压

tar -zxvf /opt/software/sqoop-1.4.7.bin__hadoop-2.6.0.tar.gz -C /opt/module
mv /opt/module/sqoop-1.4.7.bin_hadoop-2.6.0 /opt/module/sqoop-1.4.7_hadoop-2.6.0

配置文件

cp conf/sqoop-env-template.sh conf/sqoop-env.sh
vim conf/sqoop-env.sh
>>
export HADOOP_COMMON_HOME=/opt/module/hadoop-2.7.2
export HADOOP_MAPRED_HOME=/opt/module/hadoop-2.7.2
export HIVE_HOME=/opt/module/hive-1.2.1
export ZOOKEEPER_HOME=/opt/module/zookeeper-3.4.10
export ZOOCFGDIR=/opt/module/zookeeper-3.4.10/conf
export HBASE_HOME=/opt/module/hbase-1.3.1
<<
sudo vim /etc/profile
>>
##SQOOP_HOME 可加可不加,就是方便,在 ~ 家目录使用sqoop命令
export SQOOP_HOME=/opt/module/sqoop-1.4.7
export PATH=$PATH:$SQOOP_HOME/bin
<<

拷贝驱动

# 1.拷贝 MySQL 连接驱动
cp /opt/module/hive-1.2.1/lib/mysql-connector-java-5.1.27-bin.jar /opt/module/sqoop-1.4.7_hadoop-2.6.0/lib/
# 2.拷贝 hive 连接相关Jar包
cp /opt/module/hive-1.2.1/lib/* /opt/module/sqoop-1.4.7_hadoop-2.6.0/lib

测试验证

# 测试Sqoop,出现警告无所谓
sqoop help
# 测试Sqoop 连接 MySQL,出现数据库列表
sqoop list-databases --connect jdbc:mysql://hadoop102:3306/ --username root --password Root123456

使用案例

RDBMS 导入

MySQL --> HDFS

mysql

create database company;
create table company.staff(id int(4) primary key not null auto_increment, name varchar(255));
insert into company.staff(name) values('Male');
insert into company.staff(name) values('Female');
insert into company.staff(name) values('Male');
insert into company.staff(name) values('Female');
insert into company.staff(name) values('Male');
insert into company.staff(name) values('Female');
insert into company.staff(name) values('Male');
insert into company.staff(name) values('Female');

sqoop

①表数据(行列)全部导入

sqoop import --connect jdbc:mysql://hadoop102:3306/company --username root --password Root123456 --table staff --target-dir /company --delete-target-dir --num-mappers 1 --fields-terminated-by "\t" --split-by id

选项解析:
--connect MySQL URL(/database)
--un MySQL用户名
--pw MySQL密码
--target-dir HDFS目的地路径
--delete-target-dir 如果目的地路径已存在,则删除不报错
--num-mappers 1 一个mapTask执行==>意味着对表数据不split撕裂
--fields-terminated-by MySQL表中列数据以符号间隔输出
--table RDBMS的database.tableName
--split-by 以某列作为横向撕裂表的依据(默认值为主键)

# 导入结果:	_SUCCESS + 	part-m-00000 (MapReduce运行结果)
# --num-mappers 设定为1,那么只有一个文件结果,如果是多个mapTask,则根据 --split-by 列值 
#(列值如果是数字)则根据 起始值 + 结束值 / num-mappers 进行简单横向切割,且不做任何其他倾斜处理

②表数据(行列)部分导入 / 查询导入

sqoop import --connect jdbc:mysql://hadoop102:3306/company --username root --password Root123456 --target-dir /company --delete-target-dir --num-mappers 2 --fields-terminated-by "\t" --query 'select id,name from staff where id<=10 and $CONDITIONS' --split-by id

选项解析:
--c --u --p --t --d --n --f --s 略过
--query '' 通过SQL语句,对行 及 列对象 进行筛选导入
# 1.--query must contain '$CONDITIONS' in WHERE clause.
# 2.And must assign target-dir split-by,They have no default value at this time
# 3.query后如果使用"",则$CONDITIONS前必须加转移符,防止shell识别为自己的变量

③表数据(列筛选)导入

sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password Root123456 \
--target-dir /company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--columns id,name \
--table staff

选项解析:
--c --u --p --t --d --n --f --s 略过
--colums 将 指定列 从MySQL导入至 HDFS

④表数据(行筛选)导入

sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password 000000 \
--target-dir /company \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--table staff \
--where "id=1"

选项解析:
--c --u --p --t --d --n --f --s 略过
--where "" 将 符合where条件的行 从MySQL导入至 HDFS
MySQL --> Hive

其实,这个命令很不常用,通常情况下,是先MySQL --> HDFS上,再直接通过Hive的 Load 函数直接加载至Hive表中。

首先Hive中必须存在 目标表,并且注意创建表时指定的列分隔符,默认情况下 列分隔符 并不是 ‘\t’

create table if not exists staff_hive(
id int, name string
)
row format delimited fields terminated by '\t'
stored as textfile;

执行 Sqoop shell 命令

sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password Root123456 \
--table staff \
--delete-target-dir \
--num-mappers 1 \
--fields-terminated-by "\t" \
--hive-import \
--hive-overwrite \
--hive-table staff_hive

选项解析:
--c --u --p --t --n --f 略过
--hive-import 导入模式 hive
--hive-overwrite 导入模式 全部覆写
--hive-table 设定 Hive 已存在的表名
# 整个过程一共分2步:1,将数据临时导入HDFS中;2,将HDFS数据迁移到Hive仓库HDFS路径下
# 临时目录为:/user/atguigu/tableName,注意,--create-hive-table 毫无卵用
MySQL --> HBase

同上,这个命令也不常用。并且需要先在 HBase 存在 目标表。

create 'hbase_company','info'

执行 Sqoop shell 命令

sqoop import \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password Root123456 \
--table staff \
--columns "id,name" \
--column-family "info" \
--hbase-row-key "id" \
--hbase-table "staff_hbase" \
--num-mappers 1 \
--split-by id

选项解析:
--c --u --p --t --n --s 略过
--columns "" RDBMS中表的多列,使用逗号间隔
--column-family "" 指定单个列族名
--hbase-row-key "" 指定RDBMS中表的哪列是 HBase中的行key
--hbase-table "" 指定在HBase中的表名
# sqoop1.4.6只支持HBase1.0.1之前的版本的自动创建HBase表的功能,也就是同hive的create table毫无卵用

HDFS数仓 导出

从大数据集群(HDFS,HIVE,HBASE)向非大数据集群(RDBMS)中传输数据

Hive/HDFS --> RDBMS

需要先在MySQL创建库及表

create database company;
create table company.staff(id int(4) primary key not null auto_increment, name varchar(255));

执行 Sqoop shell 命令

sqoop export \
--connect jdbc:mysql://hadoop102:3306/company \
--username root \
--password Root123456 \
--table staff \
--num-mappers 1 \
--export-dir /user/hive/warehouse/staff_hive \
--input-fields-terminated-by "\t"

选项解析:
--c u p t n i 省略
--export-dir 指定Hive表 所在 HDFS 路径。所以,这也就是 HDFS文件 导出到 RDBMS
# Mysql中如果表不存在,不会自动创建

Sqoop脚本

HDFS --> MySQL
# 1.创建.opt文件
mkdir /opt/module/sqoop-1.4.7/opt
vim /opt/module/sqoop-1.4.7/opt/job_HDFS2RDBMS.opt
>>
# 2.编写Sqoop脚本,shell 选项的 回车 写而已。
export
--connect
jdbc:mysql://hadoop102:3306/company
--username
root
--password
Root123456
--table
staff
--num-mappers
1
--export-dir
/user/hive/warehouse/staff_hive
--input-fields-terminated-by
"\t"
<<
# 3.调用sqoop --options-file选项 执行 sqoop脚本
sqoop --options-file opt/job_HDFS2RDBMS.opt
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值