Word2Vec

Word2Vec

Transformer

1.Self-Attetion

矩阵形式(每行表示一个单词)

2.Multiple Heads

结果拼接

整体计算过程

3.使用位置编码表示序列的顺序

位置编码和embedding相加作为输入

4.残差连接

5.decoder

 The output of the top encoder is then transformed into a set of attention vectors K and V. These are to be used by each decoder in its “encoder-decoder attention” layer which helps the decoder focus on appropriate places in the input sequence

decoder中self-attention只允许关注之前的位置,通过在softmax前设置为-inf,mask后面的位置。

“Encoder-Decoder Attention” 也是multihead,除了计算下面输入的Q,也会计算顶层encoder的K和V。

6.Linear和Softmax

7.loss function

 

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值