目录
a. 解决膨胀:全局降级方法 @DefaultProperties
一、Hystrix 断路器 ★★
复杂分布式体系结构中的应用程序有数十个依赖关系,每一个依赖关系在某些时候将不可避免的失败。服务雪崩: 由于一个服务的不可用,导致所有服务都不可用。(Tomcat线程池资源占用 导致 级联故障)
Hystrix是一个用于处理分布式系统的延迟和容错的开源库,在分布式系统里,许多依赖不可避免的会调用失败,比如超时、异常等,
Hystrix能够保证在一个依赖出问题的情况下,不会导致整体服务失败,避免级联故障,以提高分布式系统的弹性。
作用:服务降级、服务熔断、接近实时的监控、避免服务雪崩
服务降级Fallback
- 服务器忙,请稍候再试,不让客户端等待并立刻返回一个友好提示
- 哪些情况会触发降级?
- 程序运行异常
- 超时自动降级
- 服务熔断触发服务降级
- 线程池/信号量打满也会导致服务降级
- 人工降级
服务熔断Breaker
类比保险丝达到最大服务访问后,直接拒绝访问,拉闸限电,然后调用服务降级的方法并返回友好提示
- 服务的降级->进而熔断->恢复调用链路
服务限流Flowlimit
秒杀高并发等操作,严禁一窝蜂的过来拥挤,大家排队,一秒钟N个,有序进行
1、搭建环境,进行压力测试
1. 生产者8001
1. 新建项目生产者8001 导入依赖
新建项目1.cloud-provider-hystrix-payment8001
<dependencies>
<!--新增hystrix-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
<dependency>
<groupId>com.atguigu.springcloud</groupId>
<artifactId>cloud-api-commons</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<scope>runtime</scope>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
2. YML配置文件
server:
port: 8001
spring:
application:
name: cloud-hystrix-payment-service
eureka:
client:
register-with-eureka: true
fetch-registry: true
service-url:
defaultZone: http://localhost:7001/eureka/
3. 主启动类
@SpringBootApplication
@EnableEurekaClient
//@EnableCircuitBreaker //开启降级熔断功能
public class PaymentHystrixMain8001 {
public static void main(String[] args) {
SpringApplication.run(PaymentHystrixMain8001.class,args);
}
}
4.Service
public interface PaymentService {
public String paymentInfo_OK(Integer id);
public String payment_Timeout(Integer id);
}
@Service
public class PaymentServiceImpl implements PaymentService {
//成功
public String paymentInfo_OK(Integer id){
return "线程池:"+Thread.currentThread().getName()+" paymentInfo_OK,id: "+id+"\t"+"哈哈哈" ;
}
//失败 超时方法
public String payment_Timeout(Integer id){
int timeNumber = 3;
try { TimeUnit.SECONDS.sleep(timeNumber); }catch (Exception e) {e.printStackTrace();}
return "线程池:"+Thread.currentThread().getName()+" paymentInfo_TimeOut,id: "+id+"\t"+"呜呜呜"+" 耗时(秒)"+timeNumber;
}
}
5. Controller
@RestController
@Slf4j
public class PaymentController {
@Resource
private PaymentService paymentService;
@Value("${server.port}")
private String serverPort;
//普通方法
@GetMapping("/payment/hystrix/ok/{id}")
public String paymentInfo_OK(@PathVariable("id") Integer id){
String result = paymentService.paymentInfo_OK(id);
log.info("*******result:"+result);
return result;
}
//超时方法
@GetMapping("/payment/hystrix/timeout/{id}")
public String paymentInfo_Timeout(@PathVariable("id") Integer id){
String result = paymentService.payment_Timeout(id);
log.info("*******result:"+result);
return result;
}
}
2. Jmeter 压测测试
开启Jmeter,来200个并发压死8001,20000个请求都去访问 paymentInfo_TimeOut服务
两个都在自己转圈圈
为什么会被卡死:tomcat的默认的工作线程数被打满了,没有多余的线程来分解压力和处理。
结论:上面还是服务提供者8001自己测试,假如此时外部的消费者80也来访问,那消费者只能干等,最终导致消费端80不满意,服务端8001直接被拖死。
3. 消费者80
1. 新建项目cloud-consumer-feign-hystrix-order80,导入依赖
<dependencies>
<!--新增hystrix-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-openfeign</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
<dependency>
<groupId>com.atguigu.springcloud</groupId>
<artifactId>cloud-api-commons</artifactId>
<version>${project.version}</version>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<scope>runtime</scope>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
2. yml配置文件
server:
port: 80
spring:
application:
name: cloud-provider-hystrix-payment-service
eureka:
client:
register-with-eureka: true #表识不向注册中心注册自己
fetch-registry: true #表示自己就是注册中心,职责是维护服务实例,并不需要去检索服务
service-url:
defaultZone: http://localhost:7001/eureka/
3. 主启动
@SpringBootApplication
@EnableEurekaClient //Eureka 注册中心 声明为客户端
@EnableFeignClients //Feign 远程调用
public class OrderHystrixMain80 {
public static void main(String[] args) {
SpringApplication.run(OrderHystrixMain80.class,args);
}
}
4. service接口
//Feign接口:用于远程调用的接口
@FeignClient("CLOUD-HYSTRIX-PAYMENT-SERVICE") //1. 指定调用的服务名称
public interface PaymentHystrixService {
//2.定义调用的服务方法,声明要与远程controller方法声明一致相同
@GetMapping("/payment/hystrix/ok/{id}")
public String paymentInfo_OK(@PathVariable("id") Integer id);
@GetMapping("/payment/hystrix/timeout/{id}")
public String paymentInfo_Timeout(@PathVariable("id") Integer id);
}
5. controller
@RestController
@Slf4j
public class OrderHystrixController {
//OpenFeign接口 (jdk代理)
@Resource
private PaymentHystrixService paymentHystrixService;
@GetMapping("/consumer/payment/hystrix/ok/{id}")
public String paymentInfo_OK(@PathVariable("id") Integer id){
String result = paymentHystrixService.paymentInfo_OK(id);
log.info("*******result:"+result);
return result;
}
@GetMapping("/consumer/payment/hystrix/timeout/{id}")
public String paymentInfo_TimeOut(@PathVariable("id") Integer id){
String result = paymentHystrixService.paymentInfo_Timeout(id);
log.info("*******result:"+result);
return result;
}
}
6. 再次测试
- 2W个线程压8001
- 消费端80微服务再去访问正常的OK微服务8001地址
- http://localhost/consumer/payment/hystrix/timeout/32
- 消费者80,呜呜呜
- 要么转圈圈等待,要么消费端报超时错误
8001同一层次的其他接口服务被困死,因为tomcat线程里面的工作线程已经被挤占完毕
80此时调用8001,客户端访问响应缓慢,转圈圈
2、服务降级 (Fallback) ★
服务降级可以集成在服务提供者侧,也可以集成在服务消费者侧。更多是在消费者侧处理。
总结
1.现在有提供端,hystrix 超时时间全局和局部配置,同时多个降级、哪个起作用?
谁的超时时间短执行谁 (谁先超时)
2.远程调用的方法因为降级了,消费者端也设置了降级方法,会返回远程降级方法的结果吗?
不会,远程服务端降级会引发消费者端降级,执行客户端(消费者)降级处理方法并返回结果。
3.私有降级方法和全局降级方法都存在,执行谁的?
有私有的走私有自定义方法,没有私有走全局方法。
4.远程调用没有问题,自身出现了问题,执行全局降级方法还是私有降级方法?
执行全局降级方法,远程服务没有问题则私有降级方法不会执行
1. 服务端8001 fallback
8001先从自身找问题,设置自身调用超时时间的峰值,峰值内可以正常运行,超过了需要有兜底的方法处理,作服务降级fallback
1. Service方法添加注解 @HystrixCommand、@HystrixProperty
@Service
public class PaymentServiceImpl implements PaymentService {
//成功
public String paymentInfo_OK(Integer id){
return "线程池:"+Thread.currentThread().getName()+" paymentInfo_OK,id: "+id+"\t"+"哈哈哈" ;
}
//超时降级演示
@HystrixCommand(fallbackMethod = "payment_TimeoutHandler",commandProperties = {
//指定降级方法名,5秒钟后超时执行
@HystrixProperty(name="execution.isolation.thread.timeoutInMilliseconds",value="5000")
})
//失败
public String payment_Timeout(Integer id){
//int i = 1/0; //算术异常
int timeNumber = 13; //超时异常
try {
TimeUnit.SECONDS.sleep(timeNumber);
}catch (Exception e) {
e.printStackTrace();
}
return "线程池:"+Thread.currentThread().getName()+" paymentInfo_TimeOut,id: "+id+"\t"+"呜呜呜"+" 耗时(秒)"+timeNumber;
}
//降级处理: 代替业务方法返回兜底结果
//降级方法声明要求: 必须public 返回结果类型要一致,参数类型个数要一致,名称自定义
public String payment_TimeoutHandler(Integer id){
return "系统繁忙,请稍后再试8001";
}
}
2. 主启动类开启熔断功能
@SpringBootApplication
@EnableEurekaClient
@EnableCircuitBreaker //开启降级熔断功能
public class PaymentHystrixMain8001 {
public static void main(String[] args) {
SpringApplication.run(PaymentHystrixMain8001.class,args);
}
}
测试超时和算数异常,都会走兜底方法—— 进行服务降级
2. 消费者80 fallback
80订单微服务,也可以更好的保护自己,照葫芦画瓢进行客户端降级保护。注意:服务降级可以在服务提供者侧,也可以在服务消费者侧。更多是在服务消费者侧。
1. 修改配置文件 (与服务提供端不同,服务提供端不需要配置)
由于是feign远程调用,所以需要进行整合,开启hystrix功能
feign:
hystrix:
enabled: true #如果处理自身的容错就开启。开启方式与服务提供者不一样。
2. 主启动添加@EnableHystrix 注解, (底层组合代替了@EnableCircuitBreaker)
@SpringBootApplication
@EnableEurekaClient //注册中心 声明为客户端
@EnableFeignClients //远程调用
@EnableHystrix //底层还是@EnableCircuitBreaker
public class OrderHystrixMain80 {
public static void main(String[] args) {
SpringApplication.run(OrderHystrixMain80.class,args);
}
}
3. 业务类需要降级的方法声明 @HystrixCommand注解,编写兜底方法
注意:兜底方法 返回值、参数类型数量 与原方法必须一致,必须为public
//超时降级演示
@HystrixCommand(fallbackMethod = "payment_TimeoutHandler",commandProperties = {
//超过1.5秒就降级自己
@HystrixProperty(name="execution.isolation.thread.timeoutInMilliseconds",value="1500")
})
@GetMapping("/consumer/payment/hystrix/timeout/{id}")
public String paymentInfo_TimeOut(@PathVariable("id") Integer id){
String result = paymentHystrixService.paymentInfo_Timeout(id);
log.info("*******result:"+result);
return result;
}
//兜底方法,上面方法出问题,我来处理,返回一个出错信息
public String payment_TimeoutHandler(Integer id) {
return "我是消费者80,对方支付系统繁忙请10秒后再试。或自己运行出错,请检查自己。";
}
4. yml可加入全局超时配置
feign:
hystrix:
enabled: true #如果处理自身的容错就开启。开启方式与生产端不一样。
##hystrix(降级熔断)的超时时间
hystrix:
command:
default:
execution:
timeout:
enabled: true
isolation:
thread:
timeoutInMilliseconds: 9000
现在有提供端,hystrix 超时时间全局和局部配置,同时多个降级、哪个起作用?
谁的超时时间短执行谁
a. 解决膨胀:全局降级方法 @DefaultProperties
如果每个业务方法都对应一个兜底的方法,会导致代码膨胀,代码耦合。
解决:统一通用处理和自定义独立处理的分开
1. 定义全局降级方法 @DefaultProperties(defaultFallback = "")
注意:@HystrixCommand 注解需要保留,不需要配置参数
@RestController
@Slf4j
@DefaultProperties(defaultFallback = "globalHandler") //全局降级方法
public class OrderHystrixController {
//每个业务方法对应一个兜底的方法,代码膨胀,代码耦合
//OpenFeign接口 (jdk代理)
@Resource
private PaymentHystrixService paymentHystrixService;
@GetMapping("/consumer/payment/hystrix/ok/{id}")
public String paymentInfo_OK(@PathVariable("id") Integer id){
String result = paymentHystrixService.paymentInfo_OK(id);
log.info("*******result:"+result);
return result;
}
//超时降级演示
/*@HystrixCommand(fallbackMethod = "payment_TimeoutHandler",commandProperties = {
//超过1.5秒就降级自己
@HystrixProperty(name="execution.isolation.thread.timeoutInMilliseconds",value="1500")
})*/
@HystrixCommand
@GetMapping("/consumer/payment/hystrix/timeout/{id}")
public String paymentInfo_TimeOut(@PathVariable("id") Integer id){
String result = paymentHystrixService.paymentInfo_Timeout(id);
log.info("*******result:"+result);
return result;
}
//兜底方法,上面方法出问题,我来处理,返回一个出错信息
public String payment_TimeoutHandler(Integer id) {
return "我是消费者80,对方支付系统繁忙请10秒后再试。或自己运行出错,请检查自己。";
}
//全局降级处理方法,注意不能有参数
public String globalHandler(){
return "我是全局降级处理方法";
}
}
2. yml进行全局设置 (可选)
##hystrix(降级熔断)的超时时间
hystrix:
command:
default:
execution:
timeout:
enabled: true
isolation:
thread:
timeoutInMilliseconds: 9000
私有和全局降级方法都存在,执行谁的?
有私有的走私有自定义方法,没有私有走全局方法。
b. 解决混乱:独立降级处理类 解耦
根据已有的PaymentHystrixService 服务接口,创建一个实现类,统一为接口里面的方法进行异常处理。
1. 实现服务接口,作为独立降级处理类
//独立的降级处理类 继承服务接口类
@Component
public class PaymentFallbackService implements PaymentHystrixService{
//为每一个远程调用地方方法各自添加一个降级处理方法
@Override
public String paymentInfo_OK(Integer id) {
return "远程调用[CLOUD-HYSTRIX-PAYMENT-SERVICE]服务 - [paymentInfo_OK]方法出问题了,降级处理";
}
@Override
public String paymentInfo_Timeout(Integer id) {
return "远程调用[CLOUD-HYSTRIX-PAYMENT-SERVICE]服务 - [paymentInfo_Timeout]方法出问题了,降级处理";
}
}
2. 修改服务接口@FeignClient 注解,fallback = ' '指定降级处理类
//Feign接口:用于远程调用的接口 fallback:指定降级处理类
@FeignClient(value = "CLOUD-HYSTRIX-PAYMENT-SERVICE",fallback = PaymentFallbackService.class) //1. 指定调用的服务名称
public interface PaymentHystrixService {
//2.定义调用的服务方法,声明要与远程controller方法声明一致相同
@GetMapping("/payment/hystrix/ok/{id}")
public String paymentInfo_OK(@PathVariable("id") Integer id);
@GetMapping("/payment/hystrix/timeout/{id}")
public String paymentInfo_Timeout(@PathVariable("id") Integer id);
}
3、服务熔断 (Breaker断路器) ★
熔断机制是应对雪崩效应的一种微服务链路保护机制。当扇出链路的某个微服务出错不可用或者响应时间太长时,会进行服务的降级,进而熔断该节点微服务的调用,快速返回错误的响应信息。当检测到该节点微服务调用响应正常后,再恢复调用链路。
在SpringCloud框架里,熔断机制通过Hystrix实现。Hystrix会监控微服务间调用的状态,当失败的调用到一定阈值,缺省是10秒内20次调用并有50%的失败情况,就会启动熔断机制。熔断机制的注解是@HystrixCommand
熔断器的三种状态:
1. 熔断关闭
熔断关闭不会对服务进行熔断
2. 熔断打开
请求不再进行调用当前服务,内部设置时钟一般为MTTR(平均故障处理时间),当打开时长达到所设时钟则进入熔断状态
3. 熔断半开
部分请求根据规则调用当前服务,如果请求成功且符合规则则认为当前服务恢复正常,关闭熔断
1. service 方法声明降级熔断注解@HystrixCommand,配置参数启动断路器 circuitBreaker
//服务熔断开启
@HystrixCommand(fallbackMethod = "paymentCircuitBreaker_fallback",commandProperties = {
@HystrixProperty(name = "circuitBreaker.enabled",value = "true"), //是否开启断路器
@HystrixProperty(name = "circuitBreaker.requestVolumeThreshold",value = "10"), //当在配置时间窗口(默认10秒) 内达到此数量,打开断路,默认20个
@HystrixProperty(name = "circuitBreaker.sleepWindowInMilliseconds",value = "10000"), //断路多久以后开始尝试是否恢复,默认5s
@HystrixProperty(name = "circuitBreaker.errorThresholdPercentage",value = "60"), //出错百分比阈值,当达到此阈值后,开始短路。默认50%
})
public String paymentCircuitBreaker(Integer id){
if (id < 0){
throw new RuntimeException("*****id 不能负数");
}
String serialNumber = IdUtil.simpleUUID();//hutool.cn工具包
return Thread.currentThread().getName()+"\t"+"调用成功,流水号:"+serialNumber;
}
public String paymentCircuitBreaker_fallback(Integer id){
return "id 不能负数,请稍候再试,(┬_┬)/~~ id: " +id;
}
2. controller 方法
//===服务熔断
@GetMapping("/payment/circuit/{id}")
public String paymentCircuitBreaker(@PathVariable("id") Integer id){
String result = paymentService.paymentCircuitBreaker(id);
log.info("*******result:"+result);
return result;
}
测试:10秒内连续发送8次-1,发送两次1,达到熔断条件。
第十一次发起1时,熔断机制启动,直接执行降级方法。
4、服务监控 Hystrix Dashboard
除了隔离依赖服务的调用以外,Hystrix还提供了准实时的调用监控(Hystrix Dashboard),Hystrix会持续地记录所有通过Hystrix发起的请求的执行信息,并以统计报表和图形的形式展示给用户,包括每秒执行多少请求多少成功,多少失败等。Netflix通过hystrix-metrics-event-stram项目实现了对以上指示的监控。Spring Cloud也提供了Hystrix Dashboard的整合,对监控内容转化成可视化界面。
hystrix : 豪猪
1. 新建仪表盘项目 9001
cloud-consumer-hystrix-dashboard9001
<dependencies>
<!--新增hystrix dashboard 仪表盘-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-hystrix-dashboard</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<scope>runtime</scope>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
2. YML文件配置
server:
port: 9001
hystrix:
dashboard:
proxy-stream-allow-list: "*" #哪些被仪表盘识别
3. 启动类 @EnableHystrixDashboard 启用监控功能
@SpringBootApplication
@EnableHystrixDashboard //启用监控功能
public class HystrixDashboardMain9001 {
public static void main(String[] args) {
SpringApplication.run(HystrixDashboardMain9001.class,args);
}
}
启动,可以访问了
4. 给所有需要监控的 服务提供者添加依赖配置 actuator
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-actuator</artifactId>
</dependency>
5. 在主启动类(或配置类)中指定监控路径
新版本Hystrix需要在主启动类 MainAppHystrix8001 中指定监控路径
@SpringBootApplication
@EnableEurekaClient
@EnableCircuitBreaker //开启降级熔断功能
public class PaymentHystrixMain8001 {
public static void main(String[] args) {
SpringApplication.run(PaymentHystrixMain8001.class,args);
}
//主程序类其实也是配置类,@SpringBootApplication底层有@SpringBootConfiguration
/**
*此配置是为了服务监控而配置,与服务容错本身无关,springcloud升级后的坑
*ServletRegistrationBean因为springboot的默认路径不是"/hystrix.stream",
*只要在自己的项目里配置上下面的servlet就可以了
*/
@Bean
public ServletRegistrationBean getServlet() {
HystrixMetricsStreamServlet streamServlet = new HystrixMetricsStreamServlet();
ServletRegistrationBean registrationBean = new ServletRegistrationBean(streamServlet);
registrationBean.setLoadOnStartup(1);
registrationBean.addUrlMappings("/hystrix.stream");
registrationBean.setName("HystrixMetricsStreamServlet");
return registrationBean;
}
}
直接访问/hystrix.stream,发送请求后Json格式,不好看
把地址传入http://localhost:8001/hystrix.stream,继续观察
如何观察:
七色:表示七种状态
实心圆:共有两种含义。它通过颜色的变化代表了实例的健康程度,它的健康度从绿色<黄色<橙色<红色递减。
该实心圆除了颜色的变化之外,它的大小也会根据实例的请求流量发生变化,流量越大该实心圆就越大。所以通过该实心圆的展示,就可以在大量的实体中快速的发现故障实例和高压力实例。
曲线:用来记录2分钟内流量的相对变化,可以通过它来观察到流量的上升和下降趋势。
复杂的。弄个大屏幕挂墙上?
二、Gateway 新一代网关
Geteway是原Zuul1.x版(Netflix研发)的替代
可以做什么:反向代理、鉴权(登录认证)、流量控制、熔断、日志监控
Gateway是在spring生态系统之上构建的API网关服务,基于Spring5,SpringBoot2和Project Reactor等技术。
Gateway旨在提供一种简单而有效的方式来对API进行路由,以及提供一些强大的过滤器功能,例如:熔断、限流、重试等
SpringCloud Gateway的目标提供统一的路由方式且基于Filter链的方式提供了网关基本的功能,例如:安全、监控/指标、和限流
三大核心概念
1.Route (路由)
路由是构建网关的基本模块,它由ID,目标URI,一系列的断言和过滤器组成,如果断言为true则匹配该路由
2.Predicate(断言)
参考的是java8的java.util.function.Predicate开发人员可以匹配HTTP请求中的所有内容(例如请求头或请求参数),如果请求与断言相匹配则进行路由
3.Filter (过滤)
指的是Spring框架中GatewayFilter的实例,使用过滤器,可以在请求被路由前或者之后对请求进行修改。
Gateway工作流程
核心逻辑:路由转发+执行过滤器链
客户端向Spring Cloud Gateway发出请求。然后在Gateway Handler Mapping中找到与请求匹配的路由,将其发送到Gateway Web Handler.
Handler再通过指定的过滤器链来将请求发送给我们实际的服务执行业务逻辑,然后返回。
过滤器之间用虚线分开是因为过滤器可能会在发送代理请求之前("pre")或之后("post")执行业务逻辑。
Filter在"pre"类型的过滤器可以做参数校验、权限校验、流量监控、日志输出、协议转换等,在"post"类型的过滤器中可以做响应内容、响应头的修改,日志的输出,流量控制等有着非常重要的作用。
1、环境搭建
1. 新建项目9027,添加依赖
<dependencies>
<!--新增gateway,不需要引入web和actuator模块-->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-gateway</artifactId>
</dependency>
<dependency>
<groupId>com.atguigu.springcloud</groupId>
<artifactId>cloud-api-commons</artifactId>
<version>1.0-SNAPSHOT</version>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-hystrix</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-netflix-eureka-client</artifactId>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-devtools</artifactId>
<scope>runtime</scope>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
2. yml配置
server:
port: 9527
spring:
application:
name: cloud-gateway
eureka:
instance:
hostname: cloud-gateway-service
client:
register-with-eureka: true
fetch-registry: true
service-url:
defaultZone: http://localhost:7001/eureka
3. 主启动类
@SpringBootApplication
@EnableEurekaClient
public class GateWayMain9527 {
public static void main(String[] args) {
SpringApplication.run( GateWayMain9527.class,args);
}
}
2、路由映射 (Route)
我们目前不想暴露8001端口,希望在8001外面套一层9527 (类似Nginx反向代理)
1. YML新增网关配置
spring:
application:
name: cloud-gateway
cloud:
gateway:
# discovery:
# locator:
# enabled: true #(默认是开启的) 开启从注册中心动态创建路由的功能,利用微服务名进行路由
routes: # - 表示数组|集合中的多个元素,可以作为一个整体(一个路由配置)
- id: payment_routh #路由的ID,没有固定规则但要求唯一,建议配合服务名
uri: http://localhost:8001 #匹配后提供服务的路由地址
#uri: lb://CLOUD-PAYMENT-SERVICE #路由映射:协议改为lb,gateWay集成了ribbon
predicates: #断言,需要匹配的属性,条件需要都满足,“与”的关系
- Path=/payment/get/** #路径断言:要求路径相匹配,才进行路由
- id: payment_routh2
uri: http://localhost:8001
predicates: #断言,需要匹配的属性,条件需要都满足,“与”的关系
- Path=/payment/lb/** #要求路径相匹配,才进行路由
2. 访问9527,进行测试
9527相当于一个代理服务器,起到了反向代理的作用
将请求发给9527,9527会根据路由配置转发给8001,再将结果返回
通过微服务名实现动态路由
Gateway 还默认集成了 Ribbon 可以实现负责均衡,默认轮询策略
1. 修改yml文件,协议改为lb(loadbalancer 负载均衡),根据服务名称代理
cloud:
gateway:
routes: # - 表示数组|集合中的多个元素,可以作为一个整体(一个路由配置)
- id: payment_routh #路由的ID,没有固定规则但要求唯一,建议配合服务名
#uri: http://localhost:8001 #匹配后提供服务的路由地址
uri: lb://CLOUD-PAYMENT-SERVICE #路由映射:协议改为lb,gateWay底层集成了ribbon,默认轮询
predicates: #断言,需要匹配的属性,条件需要都满足,“与”的关系
- Path=/payment/get/** #要求路径相匹配,才进行路由
- id: payment_routh2
uri: http://localhost:8001
predicates: #断言,需要匹配的属性,条件需要都满足,“与”的关系
- Path=/payment/lb/** #要求路径相匹配,才进行路由
2. 启用三个客户端实例,进行测试
启动一个eureka7001 + 三个服务提供者实例 8001/8002/8003
3、Predicate的使用
在Gateway启动时,就可以在启动值看到支持的断言
Predicate就是为了实现一组匹配规则,让请求过来找到对应的Route进行处理
Spring Cloud Gateway将路由匹配作为Spring WebFlux HandlerMapper基础框架的一部分。
Spring Cloud Gateway包括许多内置的Route Predicate工厂。所有这些Predicate都与HTTP请求的不同属性匹配。多个Route Predicate工厂可以进行组合.
1. 增加 After、Cookie断言
routes: # - 表示数组|集合中的多个元素,可以作为一个整体(一个路由配置)
- id: payment_routh #路由的ID,没有固定规则但要求唯一,建议配合服务名
#uri: http://localhost:8001 #匹配后提供服务的路由地址
uri: lb://CLOUD-PAYMENT-SERVICE #路由映射:协议改为lb,gateWay集成了ribbon
predicates: #断言,需要匹配的属性,条件需要都满足,“与”的关系
- Path=/payment/get/** #路径断言:要求路径相匹配,才进行路由
- After=2022-07-08T17:00:01.601+08:00[Asia/Shanghai] #时间断言:要求当前时间在指定时间之后
- Cookie=username,atguigu #cookie断言:要求有某个cookie
2. 测试,若不满足Predicate规则,则无法访问(404)
3. 添加Cookie,重新测试
a. 谷歌浏览器添加携带 Cookie
b .Postman 模拟请求工具添加携带 Cookie
或
4、Filter的使用
现成的 GatewayFilter(31种之多)
GlobalFilter 全局过滤器
自定义过滤器
两个主要接口:GlobalFilter (全局过滤器),Ordered(spring提供,用于过滤器执行顺序排序)
全局日志记录、统一网关鉴权
1. 添加过滤类实现接口,配置即可自动生效
import lombok.extern.slf4j.Slf4j;
import org.springframework.cloud.gateway.filter.GatewayFilterChain;
import org.springframework.cloud.gateway.filter.GlobalFilter;
import org.springframework.core.Ordered;
import org.springframework.http.HttpStatus;
import org.springframework.stereotype.Component;
import org.springframework.util.StringUtils;
import org.springframework.web.server.ServerWebExchange;
import reactor.core.publisher.Mono;
import java.util.Date;
@Component
@Slf4j
public class MyLogGateWayFilter implements GlobalFilter,Ordered {
//加入@Slf4j,log直接使用即可,(lombok提供)
//Logger log = LoggerFactory.getLogger(MyLogGateWayFilter.class);
// http://ip:port:/xxx?username=zhangsan&username=list
@Override
public Mono<Void> filter(ServerWebExchange exchange, GatewayFilterChain chain) {
log.info("*********come in MyLogGateWayFilter: "+new Date());
String uname = exchange.getRequest().getQueryParams().getFirst("username");
if(StringUtils.isEmpty(uname)){
log.info("*****用户名为Null 非法用户,(┬_┬)");
exchange.getResponse().setStatusCode(HttpStatus.NOT_ACCEPTABLE); //状态码
return exchange.getResponse().setComplete(); //拒绝访问
}
return chain.filter(exchange); //放行
}
@Override
public int getOrder() {
return 0;
}
}
没有参数,拒绝访问
添加参数,请求放行,访问成功