机器学习逻辑回归和线性回归区别

逻辑回归

**
https://zhuanlan.zhihu.com/p/28415991

逻辑回模型 也叫sigmoid函数
公式
在这里插是图片描述

逻辑回归假设函数

公式
在这里插入图片描述
推出
在这里插入图片描述

线性回归的假设函数
在这里插入图片描述

代价函数

在这里插入图片描述
常见的代价函数
1.在线性回归中,最常用的是均方误差(代价函数)
在这里插入图片描述

2。在逻辑回归中,最常用的是代价函数是交叉熵
在这里插入图片描述

代价函数与梯度
逻辑回归
梯度下降中的梯度指的是代价函数对各个参数的偏导数,偏导数的方向决定了在学习过程中参数下降的方向,学习率(通常用α表示)决定了每步变化的步长。
在这里插入图片描述

代价函数与梯度*
线性回归
在这里插入图片描述

总结

线性回归梯度下降虽然函数样子等于逻辑回归梯度下降的样子
但是他们的h(x)是不一样的

线性回归的h(x)
在这里插入图片描述
线性回归的代价函数
在这里插入图片描述
线性回归的梯度
在这里插入图片描述

逻辑回归的h(x)
在这里插入图片描述
逻辑回归的代价函数
在这里插入图片描述

逻辑回归的梯度
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值