自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(5)
  • 收藏
  • 关注

原创 Stable Diffusion XL LoRA 训练webui Linux服务器部署(保姆级教程)

这里基于kohya_ss的工程来部署,该webui既可以训练LoRA,还可以训练dreambooth,以及finetune。首先重要的事说三遍:最好基于python3.10版本来安装依赖项!最好基于python3.10版本来安装依赖项!最好基于python3.10版本来安装依赖项!

2024-01-10 14:02:05 1691

原创 Stable Diffusion XL webui dreambooth插件 Linux安装,训练LoRA(保姆级教程)

在安装这个插件之前,我已经安装了SDXL webui,tagger插件,具体安装操作可以参考之前的文章:SDXL webuitagger插件。之前已经安装了tagger插件,用来反推训练图像的提示词,接下来,我们可以利用dreambooth插件来训练我们的LoRA模型了。

2023-12-01 17:32:22 2332 1

原创 Stable Diffusion XL webui tagger 插件Linux安装(保姆级教程)

为了使SD能生成我们想要的图像效果,往往需要对SD模型进行微调,但其权重参数太多,如果是用更新全部参数的方法来微调,会耗费大量的计算资源。那么可不可以仅需少量计算资源,对模型进行微调,也有不错的效果呢?答案是肯定的,那就是:基于LoRA对其进行微调!本文写作动机:想自己训练LoRA,需要对训练数据进行tag,但是自己手动tag,比较麻烦,于是考虑用tagger插件,来实现对每张训练图像进行tag,然后在其基础上进行修改,以减少工作量。,还没有安装的可以参考我之前的文章,文件,在229行左右。

2023-11-27 14:47:43 5314 3

原创 Stable Diffusion XL webui Linux服务器部署(保姆级教程)

由于网络原因,stable-diffusion-webui所依赖的5个仓库(stablediffusion、generative-models、k-diffusion、BLIP),基本不可能一次性自动下载下来,所以最好自己事先克隆好。这里说明一下:因为stable-diffusion-webui会把stablediffusion改成stable-diffusion-stability-ai,所以上述第一个克隆命令做了一下修改。,放在stable-diffusion-webui下,操作如下。

2023-11-23 16:55:58 7405 16

原创 stable diffusion 1.5版本windows本地部署遇到的问题

stable diffusion 1.5版本windows本地部署遇到的问题

2023-07-25 17:21:54 1427

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除