Stable Diffusion XL webui Linux服务器部署(保姆级教程)

Stable Diffusion XL webui Linux服务器部署

本人把部署过程遇到的坑,会尽可能详细地写在这篇文章中,以供参考。希望能对大家有所帮助!

机器配置情况

设备情况4张RTX 4090,NVIDIA驱动版本为525.60.13,CUDA版本为12.0。

开始部署

我部署的SDXL版本为SDXL-refiner-1.0,虽然SDXL官方github提供了UI界面的脚本,但是用起来不如 AUTOMATIC1111开发的好用,所以还是推荐用AUTOMATIC1111的stable-diffusion-webui。

然后我用的是conda虚拟环境,python版本是3.10.13。切记python版本一定要3.10以上!

安装webui前准备

首先把stable-diffusion-webui克隆到服务器上

git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
cd stable-diffusion-webui
手动克隆依赖git仓库

由于网络原因,stable-diffusion-webui所依赖的5个仓库(stablediffusion、generative-models、k-diffusion、BLIP),基本不可能一次性自动下载下来,所以最好自己事先克隆好。
先把stable-diffusion-webui\modules\launch_utils.py中大概380行左右的5行代码注释掉:

    # git_clone(stable_diffusion_repo, repo_dir('stable-diffusion-stability-ai'), "Stable Diffusion", stable_diffusion_commit_hash)
    # git_clone(stable_diffusion_xl_repo, repo_dir('generative-models'), "Stable Diffusion XL", stable_diffusion_xl_commit_hash)
    # git_clone(k_diffusion_repo, repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
    # git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
    # git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)

再新建一个文件夹repositories,放在stable-diffusion-webui下,操作如下

mkdir repositories
cd repositories
git clone https://github.com/Stability-AI/stablediffusion.git stable-diffusion-stability-ai
git clone https://github.com/Stability-AI/generative-models.git
git clone https://github.com/crowsonkb/k-diffusion.git
git clone https://github.com/sczhou/CodeFormer.git
git clone https://github.com/salesforce/BLIP.git

这里说明一下:因为stable-diffusion-webui会把stablediffusion改成stable-diffusion-stability-ai,所以上述第一个克隆命令做了一下修改。

下载SDXL-refiner-1.0预训练模型

我这里用的是sd_xl_refiner_1.0.safetensors预训练模型权重,其他版本的可以去huggingface上下载,或者在官方git上打开相应版本的链接
其他版本下载完以后,放在stable-diffusion-webui/models/Stable-diffusion/路径下

换pip源

由于webui提供的自动安装的shell脚本是基于pip来安装的,所以需要换成国内镜像源,来加快下载速度,命令如下:

pip config set global.index-url https://mirrors.aliyun.com/pypi/simple

安装

准备就绪后,先返回到stable-diffusion-webui文件夹下,然后运行webui.sh 文件

cd stable-diffusion-webui
./webui.sh

如果出现以下报错:

File "/stable-diffusion-webui/repositories/k-diffusion/k_diffusion/layers.py", line 4, in <module>
    from dctorch import functional as df
ModuleNotFoundError: No module named 'dctorch'

通过指定路径来安装,因为stable-diffusion-webui会创建一个venv文件夹,存放所有的依赖包。具体如下:

pip install dctorch --target /stable-diffusion-webui/venv/lib/python3.10/site-packages/

如果在终端输入./webui.sh以后,出现以下情况:

Launching Web UI with arguments:
no module 'xformers'. Processing without...
no module 'xformers'. Processing without...
No module 'xformers'. Proceeding without it.

也可以通过同样的方式来安装,不过需要注意的是,要与python版本、torch版本(通过webui.sh来安装的话就是2.0.1)相匹配,我这里安装的xformers是0.0.20 版本,

pip install xformers==0.0.20 --target /stable-diffusion-webui/venv/lib/python3.10/site-packages/

xformers是用来加速MHA计算的,使用xformers包的话可以用以下操作:

./webui.sh --xformers

出现下面的URL,就表示安装完成了!
URL

设置public link

由于我是部署在服务器,有时候想windows本地使用的话,需要能外部访问,所以想设置一个外部链接。
首先,直接将命令改成:

./webui.sh --share --xformers
下载相关文件

如果有如下报错:
--share报错

  1. 首先手动下载frpc_linux_amd64文件
  2. 然后按要求重命名为frpc_linux_amd64_v0.2
  3. 最后放在/stable-diffusion-webui/venv/lib/python3.10/site-packages/gradio/文件夹下
  4. 给frpc_linux_amd64_v0.2可执行权限:
chmod +x /stable-diffusion-webui/venv/lib/python3.10/site-packages/gradio/frpc_linux_amd64_v0.2
修改配置文件

同样在 /stable-diffusion-webui/venv/lib/python3.10/site-packages/gradio/文件夹下,找到networking.py,大概在28行左右:

# By default, the local server will try to open on localhost, port 7860.
# If that is not available, then it will try 7861, 7862, ... 7959.
INITIAL_PORT_VALUE = int(os.getenv("GRADIO_SERVER_PORT", "7860"))
TRY_NUM_PORTS = int(os.getenv("GRADIO_NUM_PORTS", "100"))
LOCALHOST_NAME = os.getenv("GRADIO_SERVER_NAME", "127.0.0.1")
GRADIO_API_SERVER = "https://api.gradio.app/v2/tunnel-request"

LOCALHOST_NAME改成自己服务器的IP,也就是下面这行:

LOCALHOST_NAME = os.getenv("GRADIO_SERVER_NAME", "YOUR IP")

相应地,端口也可以在INITIAL_PORT_VALUE中修改。
接着,在121行左右,修改server_name为你服务器的IP:

server_name = server_name or LOCALHOST_NAME
url_host_name = "localhost" if server_name == "0.0.0.0" else server_name

改成

server_name = "YOUR IP"
url_host_name = "localhost" if server_name == "0.0.0.0" else server_name

至此,已经可以通过外部访问了。

设置账户密码

出于安全考虑,可以设置访问的账户和密码,只需在在运行命令的时候加上--gradio-auth user:password选项即可。冒号前面是你登录的账户名,后面是账户对应的密码。

最后运行:

./webui.sh --share --xformers --gradio-auth user:password

出现以下界面就大功告成了!撒花!
顺带一提:用自己服务器部署比在hugging face上直接用别人的快多了,按默认设置跑,3秒一张图,嘎嘎香!
登录界面在这里插入图片描述

对于Linux系统上的Stable Diffusion安装,你可以按照以下步骤进行操作: 1. 首先,确保你的系统已经安装了Docker。你可以通过运行以下命令来检查: ``` docker --version ``` 如果返回了Docker的版本信息,则说明已经安装了Docker,否则请先安装Docker。 2. 接下来,创建一个用于存储Stable Diffusion数据和配置的目录。你可以选择一个适合你的位置,比如`/opt/stable-diffusion`,然后执行以下命令: ``` sudo mkdir /opt/stable-diffusion ``` 3. 现在,我们可以使用Docker来安装和运行Stable Diffusion。执行以下命令来获取最新版本的Stable Diffusion镜像: ``` sudo docker pull csdn/stable-diffusion ``` 4. 当镜像下载完成后,我们可以使用以下命令来运行Stable Diffusion容器: ``` sudo docker run -d --name stable-diffusion -p 80:80 -v /opt/stable-diffusion:/data csdn/stable-diffusion ``` 这将在后台运行一个名为`stable-diffusion`的容器,并将80端口映射到主机的80端口,同时将`/opt/stable-diffusion`目录挂载到容器内的`/data`目录。 5. 等待一段时间,Stable Diffusion将会启动并开始服务。你可以通过在Web浏览器中输入服务器的IP地址或域名来访问Stable Diffusion的界面。 请注意,上述步骤仅提供了一个基本的安装示例,具体操作可能因为系统环境的差异而有所不同。如果你需要更详细的安装指南或配置信息,请参考Stable Diffusion的官方文档或联系开发者获取帮助。
评论 16
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值