无约束条件的变分
固定端点时间,固定端点状态的无约束条件变分问题
考虑泛函为 J [ x ( t ) ] = ∫ t 0 t f L [ x ( t ) , x ˙ ( t ) , t ] d t J[x(t)]=\int_{t_{0}}^{t_{f}} L[x(t),\dot{x}(t),t] \,dt J[x(t)]=∫t0tfL[x(t),x˙(t),t]dt其中 x ( t ) x(t) x(t)在 t ∈ [ t 0 , t f ] t\in [t_{0},t_{f}] t∈[t0,tf]上连续, L [ x ( t ) , x ˙ ( t ) , t ] L[x(t),\dot{x}(t),t] L[x(t),x˙(t),t]连续,二阶可微,求使 J [ x ( t ) ] J[x(t)] J[x(t)]取得极值,且满足给定的边界条件: x ( t 0 ) = x 0 , x ( t f ) = x f x(t_{0})=x_{0},x(t_{f})=x_{f} x(t0)=x0,x(tf)=xf的函数 x ∗ ( t ) x^{*}(t) x∗(t)。
求解:要求得极值曲线 x ∗ ( t ) x^{*}(t) x∗(t)必有 δ J [ x ∗ ( t ) ] = 0 \delta J[x^{*}(t)]=0 δJ[x∗(t)]=0 根据上面求极值的方法一,可知就是分别对 J J J 分别求 x ( t ) , x ˙ ( t ) x(t),\dot{x}(t) x(t),x˙(t)的导数。
δ J [ x ( t ) ] = ∫ t 0 t f { ϑ L [ x ( t ) , x ˙ ( t ) , t ] ϑ x ( t ) δ x ( t ) + ϑ L [ x ( t ) , x ˙ ( t ) , t ] ϑ x ˙ ( t ) δ x ˙ ( t ) } d t \delta J[x(t)]=\int_{t_{0}}^{t_{f}} \{\frac{\vartheta L[x(t),\dot{x}(t),t]}{\vartheta x(t)}\delta x(t)+\frac{\vartheta L[x(t),\dot{x}(t),t]}{\vartheta \dot{x}(t)}\delta \dot{x}(t) \} \,dt δJ[x(t)]=∫t0tf{ ϑx(t)ϑL[x(t),x˙(t),t]δx(t)+ϑx˙(t)ϑL[x(t),x˙(t),t]δx˙(t)}dt
简写为: δ J = ∫ t 0 t f ( ϑ L ϑ x δ x + ϑ L ϑ x ˙ δ x ˙ ) d t \delta J =\int_{t_{0}}^{t_{f}} (\frac{\vartheta L}{\vartheta x} \delta x+\frac{\vartheta L}{\vartheta \dot{x}}\delta \dot{x}) \,dt δJ=∫t0tf(ϑxϑLδx+ϑx˙ϑLδx˙)dt
右边第二项: ∫ t 0 t f ϑ L ϑ x ˙ δ x ˙ d t = ∫ t 0 t f ϑ L ϑ x ˙ δ d x = ∫ t 0 t f ϑ L ϑ x ˙ d ( δ x ) \int_{t_{0}}^{t_{f}} \frac{\vartheta L}{\vartheta \dot{x}}\delta \dot{x} \,dt =\int_{t_{0}}^{t_{f}} \frac{\vartheta L}{\vartheta \dot{x}}\delta \,dx=\int_{t_{0}}^{t_{f}} \frac{\vartheta L}{\vartheta \dot{x}} \,d(\delta x) ∫t0tfϑx˙ϑLδx˙dt=∫t0tfϑx˙ϑLδdx=∫t0tf</