最优控制问题笔记三(经典变分法解决无约束问题)

本文详细探讨了无约束条件的变分问题,包括固定端点时间和状态的变分问题,以及不固定端点状态的情况。通过欧拉方程解析解题,并通过例题展示了如何求解极值曲线,阐述了边界条件对解的影响。
摘要由CSDN通过智能技术生成

无约束条件的变分

固定端点时间,固定端点状态的无约束条件变分问题

考虑泛函为 J [ x ( t ) ] = ∫ t 0 t f L [ x ( t ) , x ˙ ( t ) , t ]   d t J[x(t)]=\int_{t_{0}}^{t_{f}} L[x(t),\dot{x}(t),t] \,dt J[x(t)]=t0tfL[x(t),x˙(t),t]dt其中 x ( t ) x(t) x(t) t ∈ [ t 0 , t f ] t\in [t_{0},t_{f}] t[t0,tf]上连续, L [ x ( t ) , x ˙ ( t ) , t ] L[x(t),\dot{x}(t),t] L[x(t),x˙(t),t]连续,二阶可微,求使 J [ x ( t ) ] J[x(t)] J[x(t)]取得极值,且满足给定的边界条件: x ( t 0 ) = x 0 , x ( t f ) = x f x(t_{0})=x_{0},x(t_{f})=x_{f} x(t0)=x0,x(tf)=xf的函数 x ∗ ( t ) x^{*}(t) x(t)

求解:要求得极值曲线 x ∗ ( t ) x^{*}(t) x(t)必有 δ J [ x ∗ ( t ) ] = 0 \delta J[x^{*}(t)]=0 δJ[x(t)]=0 根据上面求极值的方法一,可知就是分别对 J J J 分别求 x ( t ) , x ˙ ( t ) x(t),\dot{x}(t) x(t),x˙(t)的导数。

δ J [ x ( t ) ] = ∫ t 0 t f { ϑ L [ x ( t ) , x ˙ ( t ) , t ] ϑ x ( t ) δ x ( t ) + ϑ L [ x ( t ) , x ˙ ( t ) , t ] ϑ x ˙ ( t ) δ x ˙ ( t ) }   d t \delta J[x(t)]=\int_{t_{0}}^{t_{f}} \{\frac{\vartheta L[x(t),\dot{x}(t),t]}{\vartheta x(t)}\delta x(t)+\frac{\vartheta L[x(t),\dot{x}(t),t]}{\vartheta \dot{x}(t)}\delta \dot{x}(t) \} \,dt δJ[x(t)]=t0tf{ ϑx(t)ϑL[x(t),x˙(t),t]δx(t)+ϑx˙(t)ϑL[x(t),x˙(t),t]δx˙(t)}dt

简写为: δ J = ∫ t 0 t f ( ϑ L ϑ x δ x + ϑ L ϑ x ˙ δ x ˙ )   d t \delta J =\int_{t_{0}}^{t_{f}} (\frac{\vartheta L}{\vartheta x} \delta x+\frac{\vartheta L}{\vartheta \dot{x}}\delta \dot{x}) \,dt δJ=t0tf(ϑxϑLδx+ϑx˙ϑLδx˙)dt

右边第二项: ∫ t 0 t f ϑ L ϑ x ˙ δ x ˙   d t = ∫ t 0 t f ϑ L ϑ x ˙ δ   d x = ∫ t 0 t f ϑ L ϑ x ˙   d ( δ x ) \int_{t_{0}}^{t_{f}} \frac{\vartheta L}{\vartheta \dot{x}}\delta \dot{x} \,dt =\int_{t_{0}}^{t_{f}} \frac{\vartheta L}{\vartheta \dot{x}}\delta \,dx=\int_{t_{0}}^{t_{f}} \frac{\vartheta L}{\vartheta \dot{x}} \,d(\delta x) t0tfϑx˙ϑLδx˙dt=t0tfϑx˙ϑLδdx=t0tf</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值