ubuntu下cuDNN配置

一般我们开发都是基于CPU的,cuda可以看作是辅助我们针对GPU开发的一个工具。 而cuDNN官网的全称是CUDA Deep Neural Network,相比标准的cuda,它在一些常用的神经网络操作上进行了性能的优化,比如卷积,pooling,归一化,以及激活层等等。在理解上面这段的基础上,我们可以猜测配置cuDNN时是要对cuda进行一些修改,所以我们要先安装cuda。cuDNN下载需要注册,这个过程耐心点也很快。下面以ubuntu为例说明如何配置cuDNN进行神经网络的加速。
1.下载cuDNN压缩包;这里附上cudnn-7.0的百度云链接
2.对下载文件进行解压:

tar -zxvf cudnn-7.0-linux-x64-v3.0-prod.tgz

3.解压后会看到一个cuda文件夹,里面包含了include以及lib64两个子目录。我们需要做的就是将这两个字母里面的文件复制到cuda对应的安装目录。这里以cuda的安装目录为/usr/local/cuda/,这个目录下也会包含include/以及lib64/这两个文件夹,将之前目录的文件复制过来即可。

sudo cp cuDNN/cuda/include/cudnn.h /usr/local/cuda/include
sudo cp cuDNN/cuda/lib64/* /usr/local/cuda/lib64/

上面的sudo是为了声明权限。
4.这时候本来已经可以了,但是由于权限的原因原来的两个符号链接文件(libcudnn.so,libcudnn.so.7.0)已经失效了,直接编译便会报错,所以这时手动生成符号链接。

#下面的操作在/usr/local/cuda/lib64/目录下进行
sudo rm -rf libcudnn.so libcudnn.so.7.0#删除两个符号链接;
sudo ln -s libcudnn.so.7.0.64 libcudnn.so.7.0
sudo ln -s libcudnn.so.7.0 libcudnn.so

5.在编译caffe(或者其他深度学习库)时,只需要在make的配置文件Makefile.config中将USE_CUDNN取消注释即可。

©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页