一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
0 <= n <= 100
这个题想了好久,,没想到就是一个斐波那契的题。
思路应该是这样想,如果为n时f(n),跳最后一下的时候他有两种跳的方法,一种就是跳一下的时候,前面的就只需要知道n-1的最多跳法f(n-1),还有一种是跳两下,这时候就只需要知道n-2的最多跳法f(n-2)
比如就是n为1时是最多1种,为2时是最多2种,那n为3时,最后一步如果跳一下,那前面就剩2可以跳,为2时最多2种,这是之前就算到了的;最后一步如果跳两下,那前面就只剩1可以跳,而1时最多就一种跳法,也是前面算到了的,这样n为3时的最多跳法就应该是这两种情况的最大跳法加起来也就是3种
这样就可以依次推下去f(n) = f(n-1)+f(n-2),可以通过递归实现。其实知道了这个规律就很好做了。
我这里就只贴一种方法的代码:
class Solution {
/**
* @param Integer $n
* @return Integer
*/
function numWays($n) {
if ($n == 1 || $n == 0) {
return 1;
}
$a = 1;
$b = 1;
$sum = 0;
for ($i = 2; $i <= $n; $i++) {
$sum = ($a + $b)%1000000007;
list($a, $b) = [$b%1000000007, $sum%1000000007];
}
return $sum;
}
}