一只青蛙一次可以跳上1级台阶,也可以跳上2级台阶。求该青蛙跳上一个 n 级的台阶总共有多少种跳法。
答案需要取模 1e9+7(1000000007),如计算初始结果为:1000000008,请返回 1。
示例 1:
输入:n = 2
输出:2
示例 2:
输入:n = 7
输出:21
示例 3:
输入:n = 0
输出:1
提示:
- 0 <= n <= 100
解题思路
1.如果只有0阶或者1阶,则直接返回1。(后面直接从2阶及以上开始,防止0/1阶导致数组出现空指针)
2.dp[i]:跳上n级台阶,有dp[i]种方法
3.从i=3开始遍历,因为必须要有前两个存在,且存在dp[n] = dp[n-1] + dp[n-2]的关系。需要注意结果要取模。
代码
/**
* @param {number} n
* @return {number}
*/
var numWays = function(n) {
if (n <= 1) return 1
const dp = new Array(n)
dp[1] = 1
dp[2] = 2
for (let i = 3; i <= n; i++) {
dp[i] = (dp[i-1] + dp[i-2]) % 1000000007
}
return dp[n]
};