七大排序的 java 实现和理解

插入排序

1.直接插入排序

动图传送门.
思想: 类比打扑克时,一张张揭牌并从后向前找到插入位置,让手中的牌永远为有序状态

// 1.直接插入
public static void insertSort(int[] array) {
    // 1.一张张揭牌,手中的牌一直是有序的
    for (int i = 1; i < array.length; i++) {
        // 揭到第 i 张牌
        int curNum = array[i];
        // 2.向前寻找可插入的地方
        int j = i - 1;
        while (j >= 0 && curNum < array[j]) {
            // 还没有到插入的位置,第j位置向后移动,留出空位
            array[j + 1] = array[j];
            j --;
        }
        // 3.插入揭到的牌
        array[j + 1] = curNum;
    }
}

时间复杂度:

时间复杂度平均:O(n^2)最好(有序时):O(n)最坏(逆序时):O(n^2)
空间复杂度:O(1)
稳定性:稳定
优化:折半查找,先用折半查找到队对应位置,再搬移

2.希尔排序

图解:
在这里插入图片描述

思想: 直接插入排序在有序时时间复杂度为 O(n),希尔排序的思想是先让数组趋于有序,再进行直接插入排序。
具体做法:把待排序数组中所有距离为 n 的数记录分在同一组内,并对每一组内的记录进行排序。这样距离为 n 的数边为有序,再缩小 n 值重复上述操作,整个数组逐渐趋于有序,最后 n = 1时,也就是直接插入排序。

// 2.希尔排序
public static void shellSort(int[] array) {
    int gap = array.length;
    while (gap > 0) {
        insertSortGap(array, gap);
        // 缩小增量公式
        gap = gap /3 + 1;
    }
    // 此时数组已经趋于有序, gap = 1 时,相当于直接插入排序
    insertSortGap(array,1);
}

private static void insertSortGap(int[] array, int gap) {
    // 对 array 中相隔 gap 的数进行排序,类比直接插入排序
    for (int i = gap; i < array.length; i += gap) {
        int curNum = array[i];
        int j = i - gap;
        while (j >= 0 && curNum < array[j]) {
            array[j + gap] = array[j];
            j -= gap;
        }
        array[j + gap] = curNum;
    }
}

时间复杂度:

时间复杂度平均:O(n^1.3)最好:O(n)最坏:O(n^2)
空间复杂度:O(1)
稳定性:不稳定

选择排序

3.直接选择排序

思想:每轮从无序区间选择最小的数交换到最前边

// 3.直接选择排序
public static void selectSort(int[] array) {
    // 从无序区间选择最小数交换到最无序区间的最前边  有序区间[0,i)   无序区间[i,len]
    for (int i = 0; i < array.length; i++) {
        int minIndex = i;
        // 寻找最小值下标
        for (int j = i + 1; j < array.length; j++) {
            if (array[j] < array[minIndex]) {
                minIndex = j;
            }
        }
        // 找到后,交换位置
        int tmp = array[i];
        array[i] = array[minIndex];
        array[minIndex] = tmp;
    }
}

时间复杂度:每轮都要从头到尾遍历,对数据不敏感,O(n^2)
空间复杂度: O(1)
稳定性:不稳定
优化:双向选择排序,每次从无序区间找出最大和最小的元素放到最前和最后

4.堆排序

动画演示.
思想:同直接选择排序,只是不在使用每轮遍历查找无序区间的最小数放在最前边,而是通过创建大根堆每轮来选择最大值(堆顶的数)放在最后边
注意: 排升序要建大堆;排降序要建小堆

// 4.堆排
public static void heapSort(int[] array) {
    // 1.创建大根堆
    int end = array.length - 1;
    for (int i = (end - 1) / 2; i >= 0 ; i--) {
        // 从最后一个非子叶结点开始向下调整
        adjustDown(array, i, end);
    }
    // 2. 选择最大数交换位置
    while (end > 0) {
        // 将最大数换到最后边
        swap(array, 0, end);
        // 缩小无序区间
        end --;
        //再向下调整
        adjustDown(array, 0, end);
    }
}
// 向下调整:调整为父亲结点值大于子结点,在找到最大子结点后与父亲结点对比交换
private static void adjustDown(int[] array, int parent, int end) {
    // 默认最大子结点
    int child = 2 * parent + 1;
    // 有可能要调整的父亲结点是个很小的数,与最大子结点交换后依然小于子结点,还需继续调整。所以要 while 循环里,直到大于子结点或者没有子结点结束循环
    while (child <= end) {
        // 如果存在右孩子,并且右孩子大于左孩子,更新最大孩子结点
        if (child + 1 <= end && array[child + 1] > array[child]) {
            child += 1;
        }
        // 此时的 child 已经为为最大子结点
        if (array[child] > array[parent]) {
            // 如果最大孩子结点大于父亲结点,交换
            swap(array, child, parent);
            // 从子结点开始下一轮调整
            parent = child;
            child = 2 * parent + 1;
        } else {
            // 大于子结点,跳出循环
            break;
        }
    }
}
// 交换位置
private static void swap(int[] array, int i, int j) {
    int temp = array[i];
    array[i] = array[j];
    array[j] = temp;
}

时间复杂度:O(logn)
空间复杂度:O(1)
稳定性:不稳定

交换排序

5.冒泡排序

思想:在无序区间,通过相邻数的比较,将最大的数冒泡到无序区间的最后

// 5.冒泡排序
public static void bubbleSort(int[] array) {
    // 无序区间[0,len-i], i表示有序区间 数的个数
    for (int i = 0; i < array.length; i++) {
        // 遍历无序区间
        for (int j = 0; j < array.length - i - 1; j++) {
            // 对比交换相邻两个数较大的数
            if (array[j] > array[j + 1]) {
            	// 交换位置
                int tmp = array[j];
                array[j] = array[j + 1];
                array[j + 1] = tmp;
            }
        }
    }
}

时间复杂度:O(n^2)
空间复杂度: O(1)
稳定性:稳定

6.快排

思想:选定一个数作为基准,一轮遍历确定基准数位置(数组有序后基准的位置),并保证左边全是小于基准数,右边全是大于基准数,再对基准数两边进行同样的操作。即每轮将待排序区间分割为大小两个区间,中间的分割点就是基准数。

    // 6.快排
    public static void quickSort(int[] array) {
        quick(array, 0, array.length - 1);
    }
    // 递归
    private static void quick(int[] array, int low, int high) {
        // 结束条件
        if (low >= high) return;
        // 确定大小两区间的 分割点
        int piv = pivot(array, low, high);
        // 对两边区间递归
        quick(array, low, piv - 1);
        quick(array, piv + 1, high);
    }
    // 划分大小区间,并返回分割点下标
    private static int pivot(int[] array, int start, int end) {
        // 将待排序区间的首位 确定为基准数
        int piv = array[start];
        // 开始寻找基准数该在的位置
        while (start < end) {
            // 从右开始找小于基准数的数
            while (start < end && array[end] >= piv) {
                end --;
            }
            // 放在前边,因为小于基准数的数不应该出现在基准数之后
            array[start] = array[end];
            // 从左开始找大于基准数的数
            while (start < end && array[start] <= piv) {
                start ++;
            }
            // 放在后边,因为大于基准数的数不应该出现在基准数之前
            array[end] = array[start];
        }
        // 左右指针相遇位置,就是数组有序后基准数应该在的位置。因为上边一轮交换后,该位置左边全都小于基准数,右边全大于基准数
        array[end] = piv;
        // 返回基准数应该在的位置,及数组有序后基准数在的位置
        return end;
    }

时间复杂度:

时间复杂度平均:O(n * log(n))最好(均匀划分):O(n * log(n))最坏(有序的情况):O(n^2)
若均匀划分,递归 logn 层你,每次遍历 n 个数,故时间复杂度为 O(nlogn),若有序,则基准位置不需要动,每次都会以第一个位置划分区间,相当于没有划分区间,需要递归 n层,故 时间复杂度为 O(n^2)。

空间复杂度:

时间复杂度平均:O(log(n))最好(均匀划分):O(log(n))最坏(有序的情况):O(n)
原因同上,同递归的层数。

稳定性: 不稳定
优化: 以更均匀的划分区间为目的

  1. 随机选取基准
  2. 三数取中法:选3个数(最左、最右、中间)把中间大小的数和第一个数交换

归并排序

7.归并排序

图解:
在这里插入图片描述

思想:如果数组只有一个数,那么肯定有序。归并排序,先将数组分解为最小子序列,再俩俩合并,将问题转化为合并两个有序序列。这里同快排都用到了 分治思想(先放个连接回头聊).

// 7.归并排序
public static void mergeSort(int[] array) {
    mergeSortInternal(array, 0, array.length - 1);
}
// 递归
private static void mergeSortInternal(int[] array, int low, int high) {
    // 结束条件
    if (low >= high) return;
    int mid = (low + high) / 2;
    // 递归左右两部分
    mergeSortInternal(array, low, mid);
    mergeSortInternal(array, mid + 1, high);
    // 合并
    merge(array, low, mid, high);
}
// 合并两个有序数组 数组1:[low, mid]  数组2:[mid+1, high]
private static void merge(int[] array, int low, int mid, int high) {
    // 两个区间的起始位置
    int s1 = low;
    int s2 = mid + 1;
    // 归并结果接受数组
    int tmp[] = new int[high - low + 1];
    int k = 0;
    // s1 和 s2都不出界时,对比较小的数放在前边
    while (s1 <= mid && s2 <= high) {
        if (array[s1] <= array[s2]) {
            tmp[k++] = array[s1++];
        }
        if (array[s2] <= array[s1]) {
            tmp[k++] = array[s2++];
        }
    }
    // 两个区间剩余部分,添加到后边即可
    while (s1 <= mid) {
        tmp[k++] = array[s1++];
    }
    while (s2 <= high) {
        tmp[k++] = array[s2++];
    }
    // 拷贝回原数组
    for (int i = 0; i < tmp.length; i++) {
        // 注意拷贝的区间是 low 开始
        array[low + i] = tmp[i];
    }
}

归并排序对数据不敏感,时间复杂度和空间复杂度固定不变
时间复杂度:类比快排,O(n * log(n))
空间复杂度: O(n)
稳定性:稳定

归并排序时间复杂度和快排相似,空间复杂度又不如快排,归并排序就不如快排吗?
非也,归并排序可用于解决海量数据的排序问题(外部排序)
场景:内存只有 1G,需要排序的数据有 100G

因为内存中因为无法把所有数据全部放下,所以需要外部排序,而归并排序是最常用的外部排序

  1. 先把文件切分成 200 份,每个 512 M
  2. 分别对 512 M 排序,因为内存已经可以放的下,所以任意排序方式都可以
  3. 进行 200 路归并,同时对 200 份有序文件做归并过程,最终结果就有序了

稳定性

两个相等的数据,如果经过排序后,排序算法能保证其相对位置不发生变化,则我们称该算法是具备稳定性的排序算
法。
在这里插入图片描述

快排和归并排序的非递归实现

快排:

public static void quickSort2(int[] array) {
    Stack<Integer> stack = new Stack<>();
    int low = 0;
    int high = array.length - 1;
    int piv = pivot(array, low, high);
    if (piv > low + 1) {  //判断左边至少有两个元素
        stack.push(low);
        stack.push(piv - 1);
    }
    if (piv < high - 1) {
        stack.push(piv + 1);
        stack.push(high);
    }
    while (!stack.empty()) {
        high = stack.pop();
        low = stack.pop();
        piv = pivot(array, low, high);
        if (piv > low + 1) {
            stack.push(low);
            stack.push(piv - 1);
        }
        if (piv < high - 1) {
            stack.push(piv + 1);
            stack.push(high);
        }
    }
}

归并排序:

public static void mergeSort1(int[] array) {
    for (int i = 1; i < array.length; i *= 2) {
        merge1(array, i);
    }
}
private static void merge1(int[] array, int gap) {
    int s1 = 0;
    int e1 = s1 + gap - 1;
    int s2 = e1 + 1;
    int e2 = s2 + gap - 1 < array.length ? s2 + gap - 1 : array.length - 1;  // 防止越界
    int[] tmp = new int[array.length];
    int k = 0;

    while (s2 < array.length) {   // 有两个归并段
        while (s1 <= e1 && s2 <= e2) {
            if (array[s1] <= array[s2]) {
                tmp[k++] = array[s1++];
            }
            if (array[s2] <= array[s1]) {
                tmp[k++] = array[s2++];
            }
        }
        while (s1 <= e1) {
            tmp[k++] = array[s1++];
        }
        while (s2 <= e2) {
            tmp[k++] = array[s2++];
        }
        s1 = e2 + 1;
        e1 = s1 + gap - 1;
        s2 = e1 + 1;
        e2 = s2 + gap - 1 < array.length ? s2 + gap - 1 : array.length - 1;
    }
    while (s1 < array.length) {
        tmp[k++] = array[s1++];
    }
    for (int i = 0; i < tmp.length; i++) {
        array[i] = tmp[i];
    }

}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值