二进制表示中质数个计算置位
问题描述
给你两个整数 left 和 right,请你找到在 [left, right] 范围内,计算置位位数为质数的整数个数。
- 计算置位:指二进制表示中 1 的个数。
- 质数:大于 1 且只能被 1 和自身整除的数。
注意:1 不是质数。
示例:
输入: left = 6, right = 10
输出: 4
解释:
6 -> 110 (2 个计算置位,2 是质数)
7 -> 111 (3 个计算置位,3 是质数)
8 -> 1000 (1 个计算置位,1 不是质数)
9 -> 1001 (2 个计算置位,2 是质数)
10-> 1010 (2 个计算置位,2 是质数)
共计 4 个整数拥有质数个计算置位。
算法思路
关键:
- 范围限制:约束
1 <= left <= right <= 10^6 - 最大位数:
10^6 < 2^20,所以任何数字的二进制表示最多有 20 位 - 质数范围:计算置位的个数范围是 [1, 20],所以只需要判断 1-20 中的质数
预处理优化:
- 在 [1, 20] 范围内的质数只有:2, 3, 5, 7, 11, 13, 17, 19
- 可以预先将这些质数存储在 Set 中,避免重复的质数判断
代码实现
方法一:预处理质数 + 位运算计数
import java.util.*;
class Solution {
/**
* 计算在[left, right]范围内计算置位位数为质数的整数个数
*
* @param left 范围左边界(包含)
* @param right 范围右边界(包含)
* @return 满足条件的整数个数
*/
public int countPrimeSetBits(int left, int right) {
// 预处理[1, 20]范围内的质数
// 由于10^6 < 2^20,所以最多有20个1
Set<Integer> primes = new HashSet<>(Arrays.asList(2, 3, 5, 7, 11, 13, 17, 19));
int count = 0;
// 遍历范围内的每个数字
for (int num = left; num <= right; num++) {
// 计算二进制表示中1的个数
int setBits = countSetBits(num);
// 检查1的个数是否为质数
if (primes.contains(setBits)) {
count++;
}
}
return count;
}
/**
* 计算整数二进制表示中1的个数(计算置位)
*
* @param n 待计算的整数
* @return 二进制中1的个数
*/
private int countSetBits(int n) {
int count = 0;
// 使用位运算:每次清除最低位的1
while (n != 0) {
n = n & (n - 1); // 清除最低位的1
count++;
}
return count;
}
}
方法二:使用内置函数
import java.util.*;
class Solution {
/**
* 使用Java内置函数
*
* @param left 范围左边界
* @param right 范围右边界
* @return 满足条件的整数个数
*/
public int countPrimeSetBits(int left, int right) {
// 预处理质数集合
Set<Integer> primes = Set.of(2, 3, 5, 7, 11, 13, 17, 19);
int count = 0;
for (int num = left; num <= right; num++) {
// 使用Integer.bitCount()计算1的个数
if (primes.contains(Integer.bitCount(num))) {
count++;
}
}
return count;
}
}
方法三:手动质数判断
class Solution {
/**
* 不使用预处理,每次动态判断质数
*
* @param left 范围左边界
* @param right 范围右边界
* @return 满足条件的整数个数
*/
public int countPrimeSetBits(int left, int right) {
int count = 0;
for (int num = left; num <= right; num++) {
int setBits = Integer.bitCount(num);
if (isPrime(setBits)) {
count++;
}
}
return count;
}
/**
* 判断一个数是否为质数
*
* @param n 待判断的数
* @return true表示是质数,false表示不是
*/
private boolean isPrime(int n) {
// 1不是质数,小于1的数也不是质数
if (n < 2) {
return false;
}
// 2是质数
if (n == 2) {
return true;
}
// 偶数不是质数
if (n % 2 == 0) {
return false;
}
// 只需检查到sqrt(n)
for (int i = 3; i * i <= n; i += 2) {
if (n % i == 0) {
return false;
}
}
return true;
}
}
算法分析
-
时间复杂度:O(n × log m)
- n = right - left + 1(范围内的数字个数)
- log m = 计算每个数字1的个数的时间(m为数字大小)
- 方法一和二由于预处理质数,质数判断为O(1)
- 方法三的质数判断为O(√k),k≤20,也是O(1)
-
空间复杂度:
- 方法一、二:O(1) - 质数集合大小固定(8个元素)
- 方法三:O(1) - 无额外空间
算法过程
输入:left = 6, right = 10
逐个分析:
-
num = 6:
- 二进制:110
- 1的个数:2
- 2是质数
-
num = 7:
- 二进制:111
- 1的个数:3
- 3是质数
-
num = 8:
- 二进制:1000
- 1的个数:1
- 1不是质数
-
num = 9:
- 二进制:1001
- 1的个数:2
- 2是质数
-
num = 10:
- 二进制:1010
- 1的个数:2
- 2是质数
总计:4个满足条件的数字
测试用例
public static void main(String[] args) {
Solution solution = new Solution();
// 测试用例1:标准示例
System.out.println("Test 1: " + solution.countPrimeSetBits(6, 10)); // 4
// 测试用例2:包含1的情况
System.out.println("Test 2: " + solution.countPrimeSetBits(1, 5)); // 2
// 1->1(1个1,非质数), 2->10(1个1,非质数), 3->11(2个1,质数), 4->100(1个1,非质数), 5->101(2个1,质数)
// 测试用例3:较大范围
System.out.println("Test 3: " + solution.countPrimeSetBits(10, 15)); // 5
// 10->1010(2), 11->1011(3), 12->1100(2), 13->1101(3), 14->1110(3), 15->1111(4非质数)
// 测试用例4:边界情况
System.out.println("Test 4: " + solution.countPrimeSetBits(1, 1)); // 0
// 测试用例5:全范围
System.out.println("Test 5: " + solution.countPrimeSetBits(1, 1000000)); // 大数值测试
// 测试用例6:包含最大1个数的情况
System.out.println("Test 6: " + solution.countPrimeSetBits(1048575, 1048575)); // 1048575 = 2^20-1 (20个1,非质数) -> 0
// 测试用例7:验证质数边界
System.out.println("Test 7: " + solution.countPrimeSetBits(2097151, 2097151)); // 2097151 = 2^21-1 (21个1,非质数) -> 0
// 测试用例8:刚好20个1的数
int twentyOnes = (1 << 20) - 1; // 1048575
System.out.println("Test 8: " + solution.countPrimeSetBits(twentyOnes, twentyOnes)); // 0 (20不是质数)
// 测试用例9:19个1的数
int nineteenOnes = (1 << 19) - 1; // 524287
System.out.println("Test 9: " + solution.countPrimeSetBits(nineteenOnes, nineteenOnes)); // 1 (19是质数)
}
关键点
-
范围:
10^6 < 2^20 = 1,048,576- 任何输入数字最多有20个1
- 质数判断只需考虑1-20的范围
-
质数集合:
- [1, 20]内的质数:2, 3, 5, 7, 11, 13, 17, 19
- 共8个质数
-
位计数:
n & (n-1):清除最低位的1,高效计数Integer.bitCount():Java内置函数,底层优化
-
质数定义:
- 1不是质数
- 质数必须大于1且只有1和自身两个正因数
常见问题
-
为什么1不是质数?
- 质数定义要求大于1且只有两个正因数
- 1只有1个正因数(就是1本身)
-
为什么可以预处理质数?
- 由于输入范围限制,1的个数最多为20
-
位计数?
- 逐位检查:
while(n > 0) {count += n & 1; n >>= 1;} - 内置函数:
Integer.bitCount(n) - 查表法:预先计算0-255的位数
- 逐位检查:
270

被折叠的 条评论
为什么被折叠?



