762. 二进制表示中质数个计算置位(2022-4-5)
给你两个整数 left 和 right ,在闭区间 [left, right] 范围内,统计并返回 计算置位位数为质数 的整数个数。
计算置位位数 就是二进制表示中 1 的个数。
例如, 21 的二进制表示 10101 有 3 个计算置位。
示例 1:
输入:left = 6, right = 10
输出:4
解释:
6 -> 110 (2 个计算置位,2 是质数)
7 -> 111 (3 个计算置位,3 是质数)
9 -> 1001 (2 个计算置位,2 是质数)
10-> 1010 (2 个计算置位,2 是质数)
共计 4 个计算置位为质数的数字。
示例 2:
输入:left = 10, right = 15
输出:5
解释:
10 -> 1010 (2 个计算置位, 2 是质数)
11 -> 1011 (3 个计算置位, 3 是质数)
12 -> 1100 (2 个计算置位, 2 是质数)
13 -> 1101 (3 个计算置位, 3 是质数)
14 -> 1110 (3 个计算置位, 3 是质数)
15 -> 1111 (4 个计算置位, 4 不是质数)
共计 5 个计算置位为质数的数字。
提示:
- 1 <= left <= right <= 10^6
- 0 <= right - left <= 10^4
解题思路
老老实实模拟就完事了,查找1的个数,检查其是否为质数;但如果还是num%2
判断末位的1,num/2
进行迭代循环;那就太low了!今天我们一起来看看位运算的神奇!
First:还记得昨天的「树状数组」使用了x & -x
的操作,今天依旧用得到;假设1101 & (-1101)
,等于1101 & 0011
,那这结果不妥妥的末位1嘛,去掉之后接下来继续1100 & -1100 (= 0100)
,就可以直接匹配到第二个1;不难发现x & -x
这个神奇的公式竟然可以只匹配1,只要知道匹配的次数,就是1的个数了。
其原理在于:二进制的负数运算,是通过「反码」+ 1,也就是「补码」的形式表示的;通过这样的转换,就会总匹配到末位的1,至于符号位忽略掉就好了。
那么这道题就可以通过x -= x & -x
进行迭代查找1的个数了。
var countPrimeSetBits = function(left, right) {
// 20
const isPrime = (n)=>{
re