第一讲:了解函数
数学中的函数
数学中的函数指的是一种对于输入值的映射关系,将每一个输入值都映射到一个唯一的输出值上。比如,函数 f(x) = x^2 就是一个将任意实数 x 映射到其平方的函数
函数可以表示成各种形式,包括公式、图表和图形等。函数的定义域是指其所有可能的输入值,而值域则是其所有可能的输出值。例如,函数 f(x) = x^2 的定义域是所有实数,而值域是所有非负实数。
在数学中,函数有许多应用,例如可以用函数来描述物理现象、经济学和工程学中的关系,还可以用函数来解决方程和进行统计分析等。函数在数学中是一个非常基础和重要的概念,对于各个领域的学习都有着重要的作用。
第二讲:一次函数
①函数与坐标
如何精准的描述一个位置?
xxx排xxx列 xxx排xxx座 纬度
(1, 5) (7, 6) (116, 39)北京天安门
②函数与绘图
让我们来认识一个人吧:
笛卡尔(1596.3.31-1650.2.21)
法国数学家、哲学家、现代哲学之父
“我思故我在”
“越学习,越发现自己的无知”(不是让大家不学习哈,别搞错意思了)
“怀疑是智慧的源头”
解析几何的奠基者
平面(二维)直角坐标系:
三维直角坐标系:
绘画的本质是描点
小超为什么要突然来这一句呢?因为有一个软件,他致力于描点,画函数!
那个软件就是:Desmos 软件,进入Desmos后点击此处:
点击图形计算器按钮,会发现我们进入了这个界面,啊对了我为啥不直接放这个链接……
进来之后你就可以画函数啦!比如这样:
这样:
还有这样:
把所有滑块点开之后你会得到一条抽搐的线……
Desmos软件具体怎么用呢?
要想用好desmos,那有必要去了解其中的一些功能。
可以直接在网页中搜索“desmos"然后点进去,之后再点击”图形计算器”即可进入软件。
在软件的左边可以填入函数式。
点击左上角的“+”可以看到“文件夹”和“图片”这两个最重要的选项,文件夹可以帮你将一堆函数集合起来,这能够将所有函数看起来井井有条,减少杂乱感。
”图片”可以让你导入你想描绘的图片,红圈处可以调节图片的大小等各种参数。
③一次函数
一次函数(自变量的一次正式)通常可以表示为y = kx + b的形式。其中k、b是常数。k≠0。
例:y = 3x + 2 y = x - 8
特别的,当b=0时,一次函数y = kx (常数k≠0)也叫做正比例函数。
例:y = 3x y = x
正比例函数是一种特殊的一次函数
练习一
下列函数中,y是x的一次函数的有(多选)
y = x - 6(√)
y = 2 ÷ x(×)
y = x ÷ 8(√)
y = 5(×)
y = 5x(√)
一次函数图像怎么画?
再给大家补充几点:
(1)一次函数的图像是必然经过点(0, b)的直线
(2)当|k|越大,函数图像越陡;
当|k|越小,函数图像越缓。
④一次函数的平移
要想进行一次函数的平移,只需要记住小超的方法就行了:向上平移+放最后,向下平移-放最后;向左平移括号括起(x+平移长度单位),其他不变,向右平移括号括起(x-平移长度单位),其他不变。
⑤求函数解析式
例题:如果一条直线经过A(0,1)和B(2,4)这两个点,那么带一次函数的表达式是什么?
解析:y = kx + b,1 = k × 0 + b→b = 1,4 = x × 2 + b→k = 1.5,y = 1.5x + 1。
函数是具有单调性的!
第三讲:二次函数
①二次函数定义
一般地,若有两个变量x,y间的关系式可以表示成(a,b,c为常数,x的次数为2次,且a≠0)的形式,则称y是x的二次函数(x为自变量);该表达式也成为二次函数的一般式。
一次函数
二次函数
二次函数的其他表达式:
练习一:判断以下函数是否是二次函数(多选) (_____)
A.
B.
C.
D.
②二次函数图像(实践)
自己在Desmos中尝试。
从中我们可以发现,函数的系数越大,抛物线就越瘦。
③顶点式
具体什么意思自己研究,我们来学习编程。
第四讲:指数函数与对数函数
①指数与对数
指数和对数是数学中的一对重要概念。
指数是数学运算中的一种表示方式,它指定一个数要多次相乘的次数。例如,3的二次方(3²)就等于3乘以3,即9。通常用上标来表示指数,如3²表示3的二次方。指数还可以是小数或分数,表示将一个数或变量乘以自己的小数或分数次方。
对数是指数的逆运算,即求指定底数所需的指数。例如,如果2的3次方等于8,则log₂8=3。这意味着以2为底数,求8的对数等于3。对数的底数通常是10或e(自然对数),表示这些数的指数。例如,log10 1000=3,因为10的3次方等于1000。e的自然对数是约等于2.718的一个数,因为e的x次方等于。
指数和对数在数学和科学中有广泛的应用。例如,在金融中,复利计算使用指数,而音乐中,声音的强度和频率使用对数。
②指数函数
指数函数是以一个固定的正数为底数,变量为指数的函数。指数函数的一般形式可以表示为:
其中,a是底数,x为指数,y为函数值。底数a是一个正数,但不能等于1。当x=0时,指数函数的值为1。
指数函数的特点:
-
当底数a>1时,指数函数单调递增;当$a<1$时,指数函数单调递减。
-
当x趋近于
时,指数函数趋近于0;当x趋近于
时,指数函数趋近于
。
-
指数函数的图象通过点(0,1),在x轴的负半轴上方。
②对数函数
对数函数是指以一个正数为底数,另一个正数为真数的函数。对数函数的一般形式可以表示为:
其中,a是底数,x是真数,y是函数值。底数a是一个正数,但不能等于1;真数x是一个正数。
对数函数的特点:
-
当a>1时,对数函数单调递增;当a<1时,对数函数单调递减。
-
当x趋近于0时,对数函数趋近于
;当x趋近于
时,对数函数趋近于
。
-
对数函数的图象通过点(1,0),在y轴的负半轴左侧。
③指数函数与对数函数的关系
指数函数和对数函数是互为反函数的函数。即,对于指数函数,可以定义其反函数为对数函数
,反之亦然。
指数函数和对数函数的基本性质:
-
,其中
。
-
,其中
。
-
,其中
。
-
,其中
。
指数函数和对数函数在实际应用中有着广泛的运用。例如在金融领域中,复利计算中涉及到指数函数;在物理学中,指数函数和对数函数与特定现象的增长和衰减有着密切关系。
看到现在了,点个赞不过分吧?
——————————————————我是可爱的分割线—————————————————
号外号外!小超的C++教学新增栏目: 问答时间 正式投入使用啦!大家有什么问题都可以在 问答时间 栏目的评论区问哦!