python gdal:hdf转tif

比较多的人用arcpy转换hdf文件(https://blog.csdn.net/Orange_GISer/article/details/122978951?spm=1001.2101.3001.6650.5&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-5.pc_relevant_default&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-5.pc_relevant_default&utm_relevant_index=7),但是感觉一直有点问题,本文参考:https://zhuanlan.zhihu.com/p/133226223,但是这个代码的GeoTransform的计算应该是有问题的。

步骤主要是读取属性值/经纬度
保存为tif时,最重要的是 GeoTransform的构建

注意GeoTransform是一个含有6个参数的array,六个参数分别是:
GeoTransform[0] top left x 左上角x坐标
GeoTransform[1] w-e pixel resolution 东西方向像素分辨率
GeoTransform[2] rotation, 0 if image is “north up” 旋转角度,正北向上时为0
GeoTransform[3] top left y 左上角y坐标
GeoTransform[4] rotation, 0 if image is “north up” 旋转角度,正北向上时为0
GeoTransform[5] n-s pixel resolution 南北向像素分辨率
x/y为图像的x/y坐标,geox/geoy为对应的投影坐标

比如,对没有旋转的栅格数据,参数2 4均可直接设置为0。

PS. 为防止参考文章丢失,贴出一份代码,希望大家还是去原链学习,博主写的非常详细

import gdal, osr
import numpy as np
import os

#  数组保存为tif
def array2raster(TifName, GeoTransform, array):
    cols = array.shape[1]  # 矩阵列数
    rows = array.shape[0]  # 矩阵行数
    driver = gdal.GetDriverByName('GTiff')
    outRaster = driver.Create(TifName, cols, rows, 1, gdal.GDT_Float32)
    # 括号中两个0表示起始像元的行列号从(0,0)开始
    outRaster.SetGeoTransform(tuple(GeoTransform))
    # 获取数据集第一个波段,是从1开始,不是从0开始
    outband = outRaster.GetRasterBand(1)
    outband.WriteArray(array)
    outRasterSRS = osr.SpatialReference()
    # 代码4326表示WGS84坐标
    outRasterSRS.ImportFromEPSG(4326)
    outRaster.SetProjection(outRasterSRS.ExportToWkt())
    outband.FlushCache()
    
#  hdf批量转tif
def hdf2tif_batch(hdfFolder):
    #  获取文件夹内的文件名
    hdfNameList = os.listdir(hdfFolder)
    for i in range(len(hdfNameList)):
        
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值