比较多的人用arcpy转换hdf文件(https://blog.csdn.net/Orange_GISer/article/details/122978951?spm=1001.2101.3001.6650.5&utm_medium=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-5.pc_relevant_default&depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromBaidu%7ERate-5.pc_relevant_default&utm_relevant_index=7),但是感觉一直有点问题,本文参考:https://zhuanlan.zhihu.com/p/133226223,但是这个代码的GeoTransform的计算应该是有问题的。
步骤主要是读取属性值/经纬度
保存为tif时,最重要的是 GeoTransform的构建
注意GeoTransform是一个含有6个参数的array,六个参数分别是:
GeoTransform[0] top left x 左上角x坐标
GeoTransform[1] w-e pixel resolution 东西方向像素分辨率
GeoTransform[2] rotation, 0 if image is “north up” 旋转角度,正北向上时为0
GeoTransform[3] top left y 左上角y坐标
GeoTransform[4] rotation, 0 if image is “north up” 旋转角度,正北向上时为0
GeoTransform[5] n-s pixel resolution 南北向像素分辨率
x/y为图像的x/y坐标,geox/geoy为对应的投影坐标
比如,对没有旋转的栅格数据,参数2 4均可直接设置为0。
PS. 为防止参考文章丢失,贴出一份代码,希望大家还是去原链学习,博主写的非常详细
import gdal, osr
import numpy as np
import os
# 数组保存为tif
def array2raster(TifName, GeoTransform, array):
cols = array.shape[1] # 矩阵列数
rows = array.shape[0] # 矩阵行数
driver = gdal.GetDriverByName('GTiff')
outRaster = driver.Create(TifName, cols, rows, 1, gdal.GDT_Float32)
# 括号中两个0表示起始像元的行列号从(0,0)开始
outRaster.SetGeoTransform(tuple(GeoTransform))
# 获取数据集第一个波段,是从1开始,不是从0开始
outband = outRaster.GetRasterBand(1)
outband.WriteArray(array)
outRasterSRS = osr.SpatialReference()
# 代码4326表示WGS84坐标
outRasterSRS.ImportFromEPSG(4326)
outRaster.SetProjection(outRasterSRS.ExportToWkt())
outband.FlushCache()
# hdf批量转tif
def hdf2tif_batch(hdfFolder):
# 获取文件夹内的文件名
hdfNameList = os.listdir(hdfFolder)
for i in range(len(hdfNameList)):