PHYS120: Fluid Mechanics

From Ideal Gas Law,
P V = N k T    ⟹    P = ρ μ m p k T PV=NkT \implies P = \frac{\rho}{\mu m_p}kT PV=NkTP=μmpρkT
Hydrostatic Atmosphere
d P d z = − ρ g = − μ m p k T g P    ⟹    P = P 0 e − z / H \newcommand{\D}[2]{\frac{d#1}{d#2}} \D{P}{z} = -\rho g = -\frac{\mu m_p}{kT}gP \implies P = P_0e^{-z/H} dzdP=ρg=kTμmpgPP=P0ez/H
H H H is the scale height of atmosphere, approximately 8.4km

Hypsometric equation:
z = H log ⁡ P 0 P ( z ) z = H\log\frac{P_0}{P(z)} z=HlogP(z)P0

Velocity Field

The velocity of a fluid element: v ( x , y , z , t ) \boldsymbol{v}(x,y,z,t) v(x,y,z,t)

Notations:
a j b j = ∑ j a j b j Einstein Notation a_jb_j = \sum_ja_jb_j\qquad\text{Einstein Notation} ajbj=jajbjEinstein Notation
∂ j = ∂ ∂ x j ∂ t = ∂ ∂ t (and same for other derivatives) \newcommand{\DP}[2]{\frac{\partial#1}{\partial#2}} \partial_j = \DP{}{x_j}\qquad \partial_t = \DP{}{t} \qquad\text{(and same for other derivatives)} j=xjt=t(and same for other derivatives)

Convectiveon Differentiation

consider a scalar function T ( x , y , z , t ) T(x,y,z,t) T(x,y,z,t). For a small fluid element, the infinitesimal change is
δ T = T ( x + v x δ t , y + v y δ t , z + v z δ t , t + δ t ) − T ( x , y , z , t ) = ∂ T ∂ t δ t + ∂ T ∂ x v x δ t + ∂ T ∂ y v y δ t + ∂ T ∂ z v z δ t \newcommand{\D}[2]{\frac{d#1}{d#2}}\newcommand{\DP}[2]{\frac{\partial#1}{\partial#2}} \begin{aligned} \delta T &= T(x+v_x\delta t, y+v_y\delta t, z+v_z\delta t, t+\delta t) - T(x,y,z,t) \\ &= \DP{T}{t}\delta t + \DP{T}{x}v_x\delta t + \DP{T}{y}v_y\delta t + \DP{T}{z}v_z\delta t \end{aligned} δT=T(x+vxδt,y+vyδt,z+vzδt,t+δt)T(x,y,z,t)=tTδt+xTvxδt+yTvyδt+zTvzδt

Therefore, we define convective derivative (or fluid dervivative) as
D T D t = δ T δ t = ∂ t ( T ) + ( v ⋅ ∇ ) T D D t = ∂ t + ( v ⋅ ∇ ) \newcommand{\D}[2]{\frac{d#1}{d#2}}\newcommand{\FD}[2]{\frac{\mathcal{D}#1}{\mathcal{D}#2}} \FD{T}{t} = \frac{\delta T}{\delta t} = \partial_t(T) + (\boldsymbol{v}\cdot\nabla)T \qquad \FD{}{t} = \partial_t + (\boldsymbol{v}\cdot\nabla) DtDT=δtδT=t(T)+(v)TDtD=t+(v)

The acceleration:

D v D t = ( ∂ t + ( v ⋅ ∇ ) ) v \newcommand{\D}[2]{\frac{d#1}{d#2}}\newcommand{\FD}[2]{\frac{\mathcal{D}#1}{\mathcal{D}#2}} \FD{\boldsymbol{v}}{t} = (\partial_t + (\boldsymbol{v}\cdot\nabla))\boldsymbol{v} DtDv=(t+(v))v

which is not linear, resulting super complicated consequences.

Continuity

Define the current as
J = ρ v    ⟹    ∂ t ( ρ ) + ∇ ⋅ J = 0 \boldsymbol{J} = \rho\boldsymbol{v} \implies \partial_t(\rho) + \nabla\cdot\boldsymbol{J} = 0 J=ρvt(ρ)+J=0
by the conservation of mass

For inconpressible fluid,
∇ ⋅ v = 0    ⟹    D t ( v ) = 0 \nabla\cdot\boldsymbol{v} = 0 \implies \mathcal{D}_t(\boldsymbol{v}) = 0 v=0Dt(v)=0

Euler’s Equation

For an infinitesimal volume d V = d x d y d z dV = dxdydz dV=dxdydz
in z direction, F = z ^ ( − P ( x , y , z + d z ) + P ( x , y , z ) ) d x d y \boldsymbol{F} = \hat{z}(-P(x,y,z+dz)+P(x,y,z))dxdy F=z^(P(x,y,z+dz)+P(x,y,z))dxdy
F = − ( ∂ x P x ^ + ∂ y P y ^ + ∂ z P z ^ ) d V = ( − ∇ P ) d V \boldsymbol{F} = -(\partial_xP\hat{x} + \partial_yP\hat{y} + \partial_zP\hat{z})dV = (-\nabla P)dV F=(xPx^+yPy^+zPz^)dV=(P)dV

Apply the Newtonian Mechanics to fluid
a = D t v = F m = − ∇ P ρ    ⟹    ∂ t v + ( v ⋅ ∇ ) v = − ∇ P ρ + g \boldsymbol{a} = \mathcal{D}_{t}\boldsymbol{v} = \frac{\boldsymbol{F}}{m} = \frac{-\nabla P}{\rho} \implies \partial_t\boldsymbol{v} + (\boldsymbol{v}\cdot\nabla)\boldsymbol{v} = \frac{-\nabla P}{\rho} + \boldsymbol{g} a=Dtv=mF=ρPtv+(v)v=ρP+g
which is known as Euler’s Equation. This equation has nothing to do with viscosity.

Adiabatic Flow (air)
P V γ = C    ⟹    D t ( P ρ − γ ) = 0 T γ P γ − 1 = C PV^\gamma = C \implies \mathcal{D}_t(P\rho^{-\gamma}) = 0 \qquad \frac{T^\gamma}{P^{\gamma-1}}=C PVγ=CDt(Pργ)=0Pγ1Tγ=C

Streamline

The curve which the velocity is tangent to at every point.

In stationary state, streamlines are fixed in space (which is also known as pathline)

Sink and Source are the point where streamline disappears / appears, respectively.

Consider a streamline tube, if there is no sink or source, by the conservation of mass, we can get the Bernoulli’s Principle by the conservation of total energy (kinetic, potential and internal)
γ P ( γ − 1 ) ρ + 1 2 v 2 + g h = constant \frac{\gamma P}{(\gamma-1)\rho} + \frac{1}{2}v^2 + gh = \text{constant} (γ1)ργP+21v2+gh=constant

Vorticity

ω = ∇ × v \boldsymbol{\omega} = \nabla\times\boldsymbol{v} ω=×v
By the identity ( a × b ) × c = ( c ⋅ a ) b − ( c ⋅ b ) a (a\times b)\times c = (c\cdot a)b - (c\cdot b)a (a×b)×c=(ca)b(cb)a

ω × v = ( ∇ × v ) × v = ( v ⋅ ∇ ) v − 1 2 ∇ ( v 2 ) \newcommand{\V}[1]{\boldsymbol{#1}} \V{\omega}\times\V{v} = (\nabla\times\V{v})\times\V{v} = (\V{v}\cdot\nabla)\V{v} - \frac {1}{2}\nabla(\V{v}^2) ω×v=(×v)×v=(v)v21(v2)

Rewrite the Euler’s Equation
∂ t v + ω × v = − 1 2 ∇ v 2 − 1 ρ ∇ P − ∇ Φ \newcommand{\V}[1]{\boldsymbol{#1}}\partial_t\V{v} + \V{\omega}\times\V{v} = -\frac{1}{2}\nabla\V{v}^2-\frac{1}{\rho}\nabla P - \nabla\Phi tv+ω×v=21v2ρ1PΦ

In steady flow, dot multiply both sides by v \boldsymbol{v} v
v ∂ t v + v ( ω × v ) = − v 1 2 ∇ v 2 − v 1 ρ ∇ P − v ∇ Φ 0 = v ⋅ ∇ [ 1 2 v 2 + Φ + P ρ ] \newcommand{\V}[1]{\boldsymbol{#1}}\begin{aligned} \V{v}\partial_t\V{v} + \V{v}(\V{\omega}\times\V{v}) &= -\V{v}\frac{1}{2}\nabla\V{v}^2-\V{v}\frac{1}{\rho}\nabla P - \V{v}\nabla\Phi \\ 0 &= \V{v}\cdot\nabla[\frac{1}{2}\V{v}^2 + \Phi + \frac{P}{\rho}] \end{aligned} vtv+v(ω×v)0=v21v2vρ1PvΦ=v[21v2+Φ+ρP]
which indicates that, along a streamline, 1 2 v 2 + Φ + P ρ \frac{1}{2}v^2 + \Phi + \frac{P}{\rho} 21v2+Φ+ρP is constant, which is the Bernoulli’s Principle again.

For compressible fluid, we have
P = k ρ γ    ⟹    d P = k γ ρ γ − 1 d ρ = ρ γ γ − 1 d P ρ P = k\rho^\gamma \implies dP = k\gamma\rho^{\gamma-1}d\rho = \rho\frac{\gamma}{\gamma-1}d\frac{P}{\rho} P=kργdP=kγργ1dρ=ργ1γdρP
Therefore, the Bernoulli’s Equation becomes
0 = v ⋅ ∇ [ 1 2 v 2 + Φ + γ P ( γ − 1 ) ρ ] 0 = \boldsymbol{v}\cdot\nabla[\frac{1}{2}v^2 + \Phi + \frac{\gamma P}{(\gamma - 1)\rho}] 0=v[21v2+Φ+(γ1)ργP]

If the vorticity is zero, then this conclusion applies everywhere instead of only along the streamline, because we don’t have to multiply both sides by v \boldsymbol{v} v.

If the vorticity of a flow is zero, then v = ∇ ϕ \boldsymbol{v} = \nabla \phi v=ϕ, which is known as potential flow. If imcompressible, we have a Laplace Equation ∇ ϕ = 0 \nabla \phi = 0 ϕ=0

Circulation

For an arbitrary loop in the fluid, the circulation is defined as
Γ = ∮ c v ⋅ d l = ∬ S ω ⋅ d A \newcommand{\V}[1]{\boldsymbol{#1}}\Gamma = \oint_{c} \V{v}\cdot d\V{l} = \iint_S \V{\omega}\cdot d\V{A} Γ=cvdl=SωdA
by Storker Theorem.

Baroclinity

Calculate the curl of both sides of the vorticity form of Euler’s Equation
∇ × ( ∂ t v + ω × v = − 1 2 ∇ v 2 − 1 ρ ∇ P − ∇ Φ ) \nabla\times \qquad (\newcommand{\V}[1]{\boldsymbol{#1}}\partial_t\V{v} + \V{\omega}\times\V{v} = -\frac{1}{2}\nabla\V{v}^2-\frac{1}{\rho}\nabla P - \nabla\Phi) ×(tv+ω×v=21v2ρ1PΦ)

Since the curl of gradient is zero, and the curl of velocity is vorticity, we have
∂ t ω + ∇ × ( ω × v ) = − ∇ × 1 ρ ∇ P D t ω = ∂ t ω + ( v ⋅ ∇ ) ω = 1 ρ 2 ∇ ρ × ∇ P \newcommand{\V}[1]{\boldsymbol{#1}}\begin{aligned} \partial_t\V{\omega} + \nabla\times (\V{\omega}\times\V{v}) &= -\nabla\times\frac{1}{\rho}\nabla P \\ \mathcal{D}_t\V{\omega} = \partial_t\V{\omega} + (\V{v}\cdot\nabla)\V{\omega} &= \frac{1}{\rho^2}\nabla\rho\times\nabla P \end{aligned} tω+×(ω×v)Dtω=tω+(v)ω=×ρ1P=ρ21ρ×P

Define Baroclinity as ∇ P × ∇ ρ \nabla P \times \nabla \rho P×ρ, which measures the misalignment between gradient of density and pressure.

If pressure is a function of density (which is known as Barotropic Flow) or the fluid is imcompressible, the RHS is zero. This indicates, the vorticity will stay zero without voscosity.

Stress Tensor

by continuity equation and the Euler’s Equation,
∂ t ( ρ v ) = v ∂ t ρ + ρ ∂ t v = − v ∇ ⋅ ( ρ v ) − ρ ( v ⋅ ∇ ) v − ∇ P = − v i ∂ j ( ρ v j ) − ρ v j ∂ j v i − ∂ i P = − ∂ j ( ρ v j v i ) − ∂ i P = − ∂ j Π j i − ∂ i P \newcommand{\V}[1]{\boldsymbol{#1}} \begin{aligned} \partial_t(\rho\V{v}) &= \V{v}\partial_t\rho + \rho\partial_t\V{v} = -\V{v}\nabla\cdot(\rho\V{v}) - \rho(\V{v}\cdot\nabla)\V{v} - \nabla P \\ &= -v_i\partial_j(\rho v_j) - \rho v_j\partial_j v_i - \partial_i P = -\partial_j(\rho v_j v_i) - \partial_i P \\ &= -\partial_j\Pi_{ji} - \partial_i P \end{aligned} t(ρv)=vtρ+ρtv=v(ρv)ρ(v)vP=vij(ρvj)ρvjjviiP=j(ρvjvi)iP=jΠjiiP
which is known as the Stress Tensor Π j i = ρ v j v i − δ j i P \Pi_{ji} = \rho v_jv_i - \delta_{ji}P Πji=ρvjviδjiP

Water Waves

Assume that the water is imcompressible, no voscosity, no surface tension.

Plane Wave

Assume no vorticity, velocity has no y-dependent, with the Euler’s Equation
∂ t v + ( v ⋅ ∇ ) v = − 1 ρ ∇ P − g z ^ \newcommand{\V}[1]{\boldsymbol{#1}}\partial_t\V{v}+(\V{v}\cdot\nabla)\V{v} = -\frac{1}{\rho}\nabla P - g\V{\hat{z}} tv+(v)v=ρ1Pgz^

When amplitude is much smaller then wavelength, we can ignore the second term to make the equation linear. Therefore, we can use superposition principle and complex notation.
v ( x , z , t ) = Re    u ( z ) e i ( k x − ω t ) P ( x , z , t ) = P 0 − ρ g z + δ P ( x , z , t ) δ P ( x , z , t ) = Re    δ P ~ ( z ) e i ( k x − ω t ) \newcommand{\V}[1]{\boldsymbol{#1}}\begin{aligned} \V{v}(x,z,t) &= \text{Re}\;\V{u}(z)e^{i(kx-\omega t)} \\ P(x,z,t) &= P_0 - \rho gz + \delta P(x,z,t) \\ \delta P(x,z,t) &= \text{Re}\;\delta \tilde P(z) e^{i(kx-\omega t)} \end{aligned} v(x,z,t)P(x,z,t)δP(x,z,t)=Reu(z)ei(kxωt)=P0ρgz+δP(x,z,t)=ReδP~(z)ei(kxωt)

Calculate divergence of both sides of the Euler’s Equation,
∇ 2 δ P = 0    ⟹    δ P ~ ( z ) = A e k z + B e − k z \nabla^2 \delta P = 0 \implies \delta\tilde P(z) = Ae^{kz} + Be^{-kz} 2δP=0δP~(z)=Aekz+Bekz

Take this into the Euler’s Equation
u x = k ρ ω δ P ~ = k ρ ω ( A e k z + B e − k z ) u z = − i ρ ω ∂ z δ P ~ = − i k ρ ω ( A e k z − B e − k z ) \begin{aligned} u_x &= \frac{k}{\rho\omega}\delta\tilde P = \frac{k}{\rho\omega}(Ae^{kz} + Be^{-kz}) \\ u_z &= \frac{-i}{\rho\omega}\partial_z\delta\tilde P = \frac{-ik}{\rho\omega}(Ae^{kz} - Be^{-kz}) \end{aligned} uxuz=ρωkδP~=ρωk(Aekz+Bekz)=ρωizδP~=ρωik(AekzBekz)

Boundary condition:

  1. Ocean bottom: u z ( − h ) = 0    ⟹    B = A e − 2 h k u_z (-h) = 0 \implies B = Ae^{-2hk} uz(h)=0B=Ae2hk
  2. Water surface: D t P = 0 \mathcal{D}_tP = 0 DtP=0

For the surface, drop the second order term,
∂ t P + v ⋅ ∇ ( P 0 − ρ g z + δ P ) = 0    ⟹    − i ω δ P ~ = ρ g u z \partial_tP + \boldsymbol{v}\cdot\nabla(P_0 - \rho gz + \delta P) = 0 \implies -i\omega\delta\tilde P = \rho g u_z tP+v(P0ρgz+δP)=0iωδP~=ρguz
simplify to first order, we can set z = 0 z = 0 z=0 and substitute B B B, we get the dispersion relation ω ( k ) \omega(k) ω(k) for water wave (linear first order).
ω 2 = g k A − B A + B = g k tanh ⁡ ( h k ) \omega^2 = gk\frac{A-B}{A+B} = gk\tanh(hk) ω2=gkA+BAB=gktanh(hk)

Different situations

  • shallow wave h < < λ    ⟹    ω = g h k h << \lambda \implies \omega = \sqrt{gh}k h<<λω=gh k
  • deep wave h > > λ    ⟹    ω = g k h >> \lambda \implies \omega = \sqrt{gk} h>>λω=gk

Therefore, we can get the velocities of the water waves:
v p h a s e = ω k = g k tanh ⁡ ( h k ) v g r o u p = d ω d k = 1 2 v p h a s e ( 1 + 2 k h sinh ⁡ ( 2 k h ) ) \begin{aligned}v_{phase} &= \frac{\omega}{k} = \sqrt{\frac{g}{k}\tanh(hk)} \\ v_{group} &= \frac{d\omega}{dk} = \frac{1}{2}v_{phase}\Big(1+\frac{2kh}{\sinh(2kh)}\Big)\end{aligned} vphasevgroup=kω=kgtanh(hk) =dkdω=21vphase(1+sinh(2kh)2kh)

Solution

Let C = 2 A e − k h C = 2Ae^{-kh} C=2Aekh, we have the solution
δ P = C cosh ⁡ [ k ( z + h ) ] cos ⁡ ( k x − ω t ) v x = C k ρ ω cosh ⁡ [ k ( z + h ) ] cos ⁡ ( k x − ω t ) v z = C k ρ ω sinh ⁡ [ k ( z + h ) ] sin ⁡ ( k x − ω t ) \begin{aligned} \delta P &= C \cosh[k(z+h)]\cos(kx-\omega t) \\ v_x &= \frac{Ck}{\rho\omega}\cosh[k(z+h)]\cos(kx-\omega t) \\ v_z &= \frac{Ck}{\rho\omega}\sinh[k(z+h)]\sin(kx-\omega t) \end{aligned} δPvxvz=Ccosh[k(z+h)]cos(kxωt)=ρωCkcosh[k(z+h)]cos(kxωt)=ρωCksinh[k(z+h)]sin(kxωt)

Deep Water waves: ( k h kh kh is large)
x > > 1    ⟹    cosh ⁡ ( x ) ≈ sinh ⁡ ( x ) ≈ 1 2 e x x >> 1 \implies \cosh(x) \approx \sinh(x) \approx \frac{1}{2}e^{x} x>>1cosh(x)sinh(x)21ex
Therefore,
( v x v y ) = A k e k z ρ ω ( sin ⁡ ( k x − ω t ) cos ⁡ ( k x − ω t ) ) \left(\begin{matrix}v_x \\ v_y\end{matrix}\right) = \frac{Ake^{kz}}{\rho\omega}\left(\begin{matrix}\sin(kx-\omega t) \\ \cos(kx-\omega t)\end{matrix}\right) (vxvy)=ρωAkekz(sin(kxωt)cos(kxωt))

Energy

η ( x , t ) \eta (x,t) η(x,t) is the extra height above z = 0 z=0 z=0 due to the wave. ξ ( x , t ) \boldsymbol{\xi}(x,t) ξ(x,t) is the displacement of a water particle.

Energy density (comes from the time average of Potential energy and Kinetic energy)
E = 1 2 ρ g η 2 E = \frac{1}{2}\rho g\eta^2 E=21ρgη2

Energy flux is carried by the group velocity
F = E v g r F = Ev_{gr} F=Evgr

When the wave goes onto beach, where h h h is gradually decreasing, by the conservation of energy(flux), we have the Green’s Law
η = C h 1 / 4 \eta = \frac{C}{h^{1/4}} η=h1/4C

Break down of Approximation

In shallow waves,
η = ξ z ( z = 0 ) = C k 2 h ρ ω 2 cos ⁡ ( k x − ω t ) = h k ω v x = h v x v p h \eta = \xi_z(z=0) = \frac{Ck^2h}{\rho\omega^2}\cos(kx-\omega t) = h\frac{k}{\omega}v_x = h\frac{v_x}{v_{ph}} η=ξz(z=0)=ρω2Ck2hcos(kxωt)=hωkvx=hvphvx

When η ≳ h \eta \gtrsim h ηh, v x ≳ v p h v_x \gtrsim v_{ph} vxvph, which is breaking down.

In deep waves,
v x ∼ v z ∼ ∂ t η ≈ ω η v_x \sim v_z \sim \partial_t\eta \approx \omega\eta vxvztηωη

When η ≳ 1 / k \eta \gtrsim 1/k η1/k, v x ∼ v z ≳ v p h v_x \sim v_z \gtrsim v_{ph} vxvzvph, which is breaking down.

typewave shape
spillingskewed waves
turnelfor surfing

Profile steepen: velocity on the crest is larger, making the front side steeper. Therefore, in shallow water
v p h = 3 g h e f f e c t i v e − 2 g h v_{ph} = 3\sqrt{gh_{effective}} - 2\sqrt{gh} vph=3gheffective 2gh
which is result of super complex derivation.
v c r e s t − v t r o u g h = 2 g ( h + η ) − 3 g ( h − η ) = 3 g h η h v_{crest} - v_{trough} = 2\sqrt{g(h+\eta)}-3\sqrt{g(h-\eta)} = 3\sqrt{gh}\frac{\eta}{h} vcrestvtrough=2g(h+η) 3g(hη) =3gh hη

The time for the crest to catch the trough
t ≈ λ / 2 3 g h η / h = λ h 6 η g h = h 6 η T t \approx \frac{\lambda/2}{3\sqrt{gh}\eta/h} = \frac{\lambda h}{6\eta\sqrt{gh}} = \frac{h}{6\eta}T t3gh η/hλ/2=6ηgh λh=6ηhT

This forms the effect called Hydrolic Jump, which causes the instability even from a perfect sin/cos wave.

In deep water, Stalling effect acts against steepening, because from Fourier Transform, steeper waves have smaller k, which is slower.

When stalling and steepening balance each other, it is known as Solitary Wave or Solition.

Korteweg-DeVries Equation

2 Dutch in 1895

Correction on the dispersion
tanh ⁡ x ≈ x − x 3 3    ⟹    ω = g h k ( 1 − h 2 k 2 6 ) \tanh x \approx x-\frac{x^3}{3} \implies \omega = \sqrt{gh}k(1-\frac{h^2k^2}{6}) tanhxx3x3ω=gh k(16h2k2)
Substitute ω \omega ω and k k k with the partial derivatives of η \eta η
∂ t η + g h ∂ x η + g h h 2 6 ∂ x 3 η = 0 \partial_t\eta + \sqrt{gh}\partial_x\eta + \sqrt{gh}\frac{h^2}{6}\partial^3_x\eta = 0 tη+gh xη+gh 6h2x3η=0

Adding a non-linear correction (should be something about η / h \eta/h η/h), we get to the Korteweg-DeVries Equation
∂ t η + g h ( 1 + 3 η 2 h ) ∂ x η + g h h 2 6 ∂ x 3 η = 0 \partial_t\eta + \sqrt{gh}(1+\frac{3\eta}{2h})\partial_x\eta + \sqrt{gh}\frac{h^2}{6}\partial^3_x\eta = 0 tη+gh (1+2h3η)xη+gh 6h2x3η=0
obviously, the factor 3 / 2 3/2 3/2 comes from the effective h h h equation in the previous section.

The solution could be
η = η 0 sech 2 [ 3 η 0 4 h 3 ( x − u t ) ] with    u = g h ( 1 + η 0 2 h ) \eta = \eta_0 \text{sech}^2\Big[\sqrt{\frac{3\eta_0}{4h^3}}(x-ut)\Big] \quad\text{with}\; u = \sqrt{gh}(1+\frac{\eta_0}{2h}) η=η0sech2[4h33η0 (xut)]withu=gh (1+2hη0)

Surface Tension

leads to ripples and capillary waves (large k k k, short wavelength)

The effect which trys to minimize the surface, because surface causes energy.
Δ E = γ Δ A \Delta E = \gamma \Delta A ΔE=γΔA

Capillary Waves

waves with large k

ω 2 = γ ρ k 3 \omega^2 = \frac{\gamma}{\rho}k^3 ω2=ργk3
can be infered from dimensional analysis

Overrall, for large k
ω 2 = g k + γ ρ k 3    ⟹    v p h 2 = h k + γ ρ k \omega^2 = gk + \frac{\gamma}{\rho}k^3 \implies v_{ph}^2 = \frac{h}{k} + \frac{\gamma}{\rho}k ω2=gk+ργk3vph2=kh+ργk
which has a minimum value:
k = ρ g γ v p h 2 = 2 g γ ρ    ⟹    v p h ≈ 0.23 m/s k = \sqrt{\frac{\rho g}{\gamma}} \quad v_{ph}^2 = 2\sqrt{\frac{g\gamma}{\rho}} \implies v_{ph} \approx 0.23 \text{m/s} k=γρg vph2=2ρgγ vph0.23m/s
The following figure is v p h v_{ph} vph versus k k k (from shallow to deep to capillary)
[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-svt4y8rs-1609270197968)(https://i.loli.net/2020/11/18/FijW5swYdUayGNE.png)]

Interface

in the interface between two liquid ( ρ 1 , ρ 2 \rho_1, \rho_2 ρ1,ρ2 from up to down)
ω 2 = g k ρ 2 − ρ 1 ρ 2 + ρ 1 + γ k 3 ρ 2 + ρ 1 \omega^2 = gk\frac{\rho_2-\rho_1}{\rho_2+\rho_1} + \frac{\gamma k^3}{\rho_2+\rho_1} ω2=gkρ2+ρ1ρ2ρ1+ρ2+ρ1γk3

If the ω \omega ω is imarginary, the waves become exponential.

Rayleigh-Taylor Instability
ω 2 < 0    ⟹    k 2 < g ∣ ρ 2 − ρ 1 ∣ γ    ⟹    λ > 2 π γ g ∣ ρ 2 − ρ 1 ∣ \omega^2 < 0 \implies k^2 < \frac{g|\rho_2-\rho_1|}{\gamma} \implies \lambda > 2\pi\sqrt{\frac{\gamma}{g|\rho_2-\rho_1|}} ω2<0k2<γgρ2ρ1λ>2πgρ2ρ1γ
which implies longer wave length causes more instability.

Viscosity

Parity: x → − x ,    y → − y ,    z → − z    ⟹    v → − v x\to -x,\; y \to -y,\; z\to -z \implies v\to -v xx,yy,zzvv
Time reverse: t → − t    ⟹    v → − v t \to -t \implies v\to -v ttvv
Newtonian holds parity invariance, but friction does not hold time reverse invariance.

Ignore gravity, Euler’s Equation respects parity and time reverse invariance. However, we can add an extra term that respects parity but violates time reverse invariance. The possible and reasonable choice is Laplacian.

Navier–Stokes equations

Rewrite the Euler’s Equation with the extra term known as the Kinematic Viscosity, we have an equation which deserves the title (also known as N-S Equation):
∂ v ∂ t + ( v ⋅ ∇ ) v = − ∇ P ρ − ∇ Φ + ν ∇ 2 v \newcommand{\V}[1]{\boldsymbol{#1}}\frac{\partial\V{v}}{\partial t} + (\V{v}\cdot\nabla)\V{v} = -\frac{\nabla P}{\rho} - \nabla\Phi + \nu\nabla^2\V{v} tv+(v)v=ρPΦ+ν2v

  • ν \nu ν is called kinematic viscosity coefficient.
  • η = ρ ν \eta = \rho\nu η=ρν is called dynamic viscosity coefficient.

The curl of the equation gives, even if the liquid is barotropic, viscosity generates vorticity at low velocity (boundary)
D t ω = ν ∇ 2 ω \mathcal{D}_t\boldsymbol{\omega} = \nu\nabla^2\boldsymbol{\omega} Dtω=ν2ω

Reynolds Number

the relative importance of inertial and viscosity
R e = inertial viscosity = ( v ⋅ ∇ ) v ν ∇ 2 v = v l ν Re = \frac{\text{inertial}}{\text{viscosity}} = \frac{(v\cdot\nabla)v}{\nu\nabla^2v} = \frac{vl}{\nu} Re=viscosityinertial=ν2v(v)v=νvl
This is not a precisely defined quantity, since the length is any kinds of length scale in the system.

  • Low Re: slow, high viscosity (Laminar Flow)
  • High Re: Fast, low viscosity (Turbulence Flow)

Hagen-Poisieulle Flow

The steady incompressible flow through a pipe with radius R R R and length l l l.

Velocity is only function of radius ( v = v z ( r ) z ^ \boldsymbol{v} = v_z(r)\hat{\boldsymbol{z}} v=vz(r)z^), which has no dependency on z z z. Thus, the LHS of N-S Equation is zero. Hence
Δ P ρ l + ν d d r [ r d v z d r ] = 0    ⟹    d d r [ r d v d r ] = − K < 0 \frac{\Delta P}{\rho l} + \nu \frac{d}{dr}[r\frac{dv_z}{dr}] = 0 \implies \frac{d}{dr}[r\frac{d\boldsymbol{v}}{dr}] = -K < 0 ρlΔP+νdrd[rdrdvz]=0drd[rdrdv]=K<0
Solve to get
v z ( r ) = − K 4 ( R 2 − r 2 ) , K = Δ P ν ρ l v_z(r) = -\frac{K}{4}(R^2-r^2), \qquad K = \frac{\Delta P}{\nu \rho l} vz(r)=4K(R2r2),K=νρlΔP

The mass current (mass passed per unit time) is
J = ∫ ρ v z ( r ) d A = π Δ P 8 ν l R 4 J = \int \rho v_z(r)dA = \frac{\pi\Delta P}{8\nu l}R^4 J=ρvz(r)dA=8νlπΔPR4

Murray’s Law

1926

  1. Power needed per unit length ∼ J D l P = C J 2 / R 4 \sim J\mathcal{D}_lP= CJ^2/R^4 JDlP=CJ2/R4
  2. Power needed to maintenance ∼ C ′ R 2 \sim C'R^2 CR2

To optimize, we have
R o p t i o n a l = k J 1 / 3 R_{optional} = kJ^{1/3} Roptional=kJ1/3

Stokes Drag

A sphere in the fluid in Low Re
F = 6 π η R v \boldsymbol{F} = 6\pi \eta R\boldsymbol{v} F=6πηRv

Terminal Velocity of a sphere ( ρ s \rho_s ρs) falling through a fluid
6 π η R v + 4 3 π R 3 ρ g = 4 3 π R 3 ρ s g    ⟹    v = 2 ( ρ s − ρ ) R 2 g 9 ρ ν 6\pi\eta Rv + \frac{4}{3}\pi R^3 \rho g = \frac{4}{3}\pi R^3\rho_s g \implies v = \frac{2(\rho_s-\rho)R^2g}{9\rho\nu} 6πηRv+34πR3ρg=34πR3ρsgv=9ρν2(ρsρ)R2g

Rain Drop R = 2 m m ,    ν = 15 m m 2 / s    ⟹    v ≈ 600 m / s R = 2mm, \; \nu = 15mm^2/s \implies v \approx 600m/s R=2mm,ν=15mm2/sv600m/s
which is completely wrong! since the Reynolds Number is very large. Stokes Formula cannot be applied.

Boundary Layer

Turbulent flow is super complicated with no analytic solution.

For laminar flow, the thickness of boundary layer is
δ ∼ ν t = 5 ν x v    ⟹    δ x ∼ 5 R e x \delta \sim \sqrt{\nu t} = 5\sqrt{\frac{\nu x}{v}} \implies \frac{\delta}{x}\sim\frac{5}{\sqrt{Re_x}} δνt =5vνx xδRex 5

Turbulence

Turbulence is critical in everyday life, e.g. heat exchanger. Cost: increase drag and require more power.

Kelvin-Helmholtz Instability

Interface of two fluid ρ 1 \rho_1 ρ1 and ρ 2 \rho_2 ρ2 with velocity v 1 v_1 v1 and v 2 v_2 v2 respectively. If v 1 ≠ v 2 v_1\neq v_2 v1=v2, then the fluid is instable, known as Kelvin-Helmholtz Instability.

Without gravity/viscosity/surface tension, like water waves:
{ ∂ x v x + ∂ z v z = 0 ∂ t v x + v x ∂ x v x + v z ∂ z v x = − ∂ x P / ρ ∂ t v z + v x ∂ x v z + v z ∂ z v z = − ∂ z P / ρ \left\{\begin{aligned}&\partial_xv_x+\partial_zv_z = 0 \\ &\partial_tv_x + v_x\partial_xv_x + v_z\partial_zv_x = -\partial_xP/\rho \\ &\partial_tv_z + v_x\partial_xv_z + v_z\partial_zv_z = -\partial_zP/\rho \end{aligned}\right. xvx+zvz=0tvx+vxxvx+vzzvx=xP/ρtvz+vxxvz+vzzvz=zP/ρ
Consider derivation v x = u + δ u ,    v z = δ v ,    P = P 0 + δ P v_x = u + \delta u,\; v_z = \delta v,\; P = P_0 + \delta P vx=u+δu,vz=δv,P=P0+δP, drop higher order terms:
{ ∂ x δ u + ∂ z δ v = 0 ∂ t δ u + u ∂ x δ u = − ∂ x δ P / ρ ∂ t δ v + u ∂ x δ v = − ∂ z δ P / ρ \left\{\begin{aligned}&\partial_x\delta u+\partial_z\delta v = 0 \\ &\partial_t\delta u + u\partial_x\delta u = -\partial_x\delta P/\rho \\ &\partial_t\delta v + u\partial_x\delta v = -\partial_z\delta P/\rho \end{aligned}\right. xδu+zδv=0tδu+uxδu=xδP/ρtδv+uxδv=zδP/ρ
Assume wave behavior, δ X = δ X ~ ( z ) e i ( k x − ω t ) \delta X = \delta \tilde X(z)e^{i(kx-\omega t)} δX=δX~(z)ei(kxωt)
{ i k δ u ~ + ∂ z δ v ~ = 0 ρ ( − i ω + u i k ) δ u ~ = − i k δ P ~ ρ ( − i ω + u i k ) δ v ~ = − ∂ z δ P ~ \left\{\begin{aligned}&ik\delta\tilde u+\partial_z\delta\tilde v = 0 \\ &\rho(-i\omega+uik)\delta\tilde u = -ik\delta\tilde P \\ &\rho(-i\omega+uik)\delta\tilde v = -\partial_z\delta\tilde P \end{aligned}\right. ikδu~+zδv~=0ρ(iω+uik)δu~=ikδP~ρ(iω+uik)δv~=zδP~
Combine the three equation by differentiating the first w.r.t. z again:
d 2 δ v ~ d z 2 = − i k ∂ z δ u ~ = − k 2 ρ ( − i ω + u i k ) ∂ z δ P ~ = k 2 δ v ~    ⟹    δ v ~ = C e ± k z \begin{aligned}\frac{d^2\delta\tilde v}{dz^2} &= -ik\partial_z\delta\tilde u = \frac{-k^2}{\rho(-i\omega + uik)}\partial_z\delta\tilde P \\ &= k^2\delta\tilde v \\ \implies&\delta\tilde v = Ce^{\pm kz}\end{aligned} dz2d2δv~=ikzδu~=ρ(iω+uik)k2zδP~=k2δv~δv~=Ce±kz
For convergence, the upper layer has negative sign, the lower layer has positive sign. Apply boundary condition for a wave form displacement:
δ v ( z = 0 ) = D t η    ⟹    δ v ~ = η 0 i ( u k − ω ) e ± k z \delta v(z=0) = \mathcal{D}_t \eta \implies \delta\tilde v = \eta_0i(uk-\omega)e^{\pm kz} δv(z=0)=Dtηδv~=η0i(ukω)e±kz
Apply the boundary condition for pressure, we get:
P 1 ( z = 0 ) = P 2 ( z = 0 )    ⟹    ρ 1 ( u 1 k − ω ) 2 + ρ 2 ( u 2 k − ω ) 2 = 0 P_1(z=0) = P_2(z=0) \implies \rho_1(u_1k-\omega)^2 + \rho_2(u_2k-\omega)^2 = 0 P1(z=0)=P2(z=0)ρ1(u1kω)2+ρ2(u2kω)2=0

which gives a complex solution:
ω = ρ 1 u 1 + ρ 2 u 2 ρ 1 + ρ 2 k ± i ρ 1 ρ 2 ( u 1 − u 2 ) ρ 1 + ρ 2 k \omega = \frac{\rho_1u_1+\rho_2u_2}{\rho_1+\rho_2}k \pm i\frac{\sqrt{\rho_1\rho_2}(u_1-u_2)}{\rho_1+\rho_2}k ω=ρ1+ρ2ρ1u1+ρ2u2k±iρ1+ρ2ρ1ρ2 (u1u2)k

Von Karman Vortex Street

with high Reynold number, the time reversed invariance can be held. The sphere in the flow will result in a turbulence, because the high speed fluid element passing by the sphere will not merge into a higher pressure region.

The increasing pressure along the sphere surface causes a Boundary Layer Separation (reversed flow)

image

Drag Coefficient C D C_D CD is defined by the equation below
F D = 1 2 ρ v 2 A C D F_D = \frac{1}{2}\rho v^2AC_D FD=21ρv2ACD
where A A A is the incident area.

  • Stokes: C D = 24 / R e C_D = 24/Re CD=24/Re
  • Constant: Pressure difference goes from ∼ v \sim v v to ∼ v 2 \sim v^2 v2
  • Dip: Boundary layer becomes turbulent.

Kolmogoror Theory

ϵ \epsilon ϵ is the energy per unit mass per unit of time supplied into the fluid. For eddy size d d d, the velocity of the eddy should be
v ( d ) = ( ϵ d ) 1 / 3 v(d) = (\epsilon d)^{1/3} v(d)=(ϵd)1/3
the minimum eddy is determined by the viscosity and the energy supplied:
d m i n = ν 3 / 4 ϵ 1 / 4 d_{min} = \frac{\nu^{3/4}}{\epsilon^{1/4}} dmin=ϵ1/4ν3/4
Combine the two equation together, we have a surprising result
d m a x d m i n = ( v m a x d m a x ν ) 3 / 4 = R e 3 / 4 \frac{d_{max}}{d_{min}} = (\frac{v_{max}d_{max}}{\nu})^{3/4} = Re^{3/4} dmindmax=(νvmaxdmax)3/4=Re3/4

Fourier Transform gives d ∼ λ / 2 ∼ π / k d \sim \lambda/2 \sim \pi/k dλ/2π/k, the energy spectrum is
E = [ ϵ 2 / 3 k − 5 / 3 ] d k E = [\epsilon^{2/3}k^{-5/3}]dk E=[ϵ2/3k5/3]dk

Temperature

Diffusion Equation
∂ t T = κ ∇ 2 T \partial_tT = \kappa\nabla^2T tT=κ2T

with fluid derivatives
D t T = κ ∇ 2 T \mathcal{D}_tT = \kappa\nabla^2T DtT=κ2T

Boussinesq Approximation: ρ = ( 1 − α T ) \rho = (1-\alpha T) ρ=(1αT), only with g g g

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值