蓝桥杯练习有感

素数分解

题目描述:
Description

2019可以被分解成若干个两两不同的素数,请问不同的分解方案有多少种?

注意:分解方案不考虑顺序,如2+2017=2019和2017+2=2019属于同一种方案。

输入输出描述:
Input

Output
分解方案的种数。

样例:
Sample Input 1


Sample Output 1


Hint

C语言要用long long哦

题解(dp + 线性筛)
本题需先用线性筛法筛出2019以内的所有的质数,得到其所有2019内的质数数量cnt,然后再开一个dp数组表示某一数字的素数分解方案数量。最后以动态规划(类似01背包)的方式求出最后的答案。

时间复杂度: O ( n 2 ) O(n^2) O(n2)

#include<iostream>
using namespace std;
typedef long long ll;
const int N=2500;
ll primes[N],dp[N];
int cnt=1;
bool st[N];

void get_primes(int n)
{
    for (int i = 2; i <= n; i ++ )
    {
        if (!st[i]) primes[cnt ++ ] = i;
        for (int j = 1; primes[j] <= n /i; j ++ )
        {
            st[primes[j] * i] = true;
            if (i % primes[j] == 0) break;
        }
    }
}
int main()
{
    get_primes(2019);

    dp[0]=1;
    for(int i=1;i<cnt;i++)
        for(int j=2019;j>=primes[i];j--)
            dp[j]+=dp[j-primes[i]];

    cout<<dp[2019]<<'\n';
    return 0;
}


矩阵求和

题目描述:
Description

经过重重笔试面试的考验,小明成功进入 Macrohard 公司工作。

今天小明的任务是填满这么一张表:

表有 n 行 n 列,行和列的编号都从1算起。

其中第 i 行第 j 个元素的值是 gcd(i, j)的平方,

gcd 表示最大公约数,以下是这个表的前四行的前四列:

1 1 1 1

1 4 1 4

1 1 9 1

1 4 1 16

小明突然冒出一个奇怪的想法,他想知道这张表中所有元素的和。

由于表过于庞大,他希望借助计算机的力量。

输入输出描述:
Input
一行一个正整数 n 意义见题。

对于 30% 的数据,n <= 1000

存在 10% 的数据,n = 10^5

对于 60% 的数据,n <= 10^6

对于 100% 的数据,n <= 10^7

Output
一行一个数,表示所有元素的和。由于答案比较大,请输出模 (10^9 + 7)(即:十亿零七) 后的结果。

样例:
Sample Input 1

4
Sample Output 1

48

题解(欧拉筛 + 前缀和)
本题我第一次做时用了暴力,后来又尝试去找些规律,但暴力必定超时,我自以为对的规律后来证实也是错的QAQ…
于是我看来题解发现转化后是个数论的题。。

首先本题我们求的实际是求的是: ∑ i = 1 n ∑ j = 1 n g c d ( i , j ) 2 \sum_{i=1}^{n}\sum_{j=1}^{n}{gcd(i,j)^2} i=1nj=1ngcd(i,j)2

我们不妨设 g c d ( i , j ) = d gcd(i,j)=d gcd(i,j)=d

由此可得 ∑ i = 1 n ∑ j = 1 n g c d ( i , j ) 2 \sum_{i=1}^{n}\sum_{j=1}^{n}{gcd(i,j)^2} i=1nj=1ngcd(i,j)2 = > => => ∑ d = 1 n d 2 ∗ c o u n t ( d ) \sum_{d=1}^{n}{d^2}*count(d) d=1nd2count(d)

好的,那怎么求 c o u n t ( d ) count(d) count(d)
注:count(d)表示以d为最大公约数的i,j数对的个数.

这个应该有很多方法。

这里我讲下{欧拉函数}的方法:

g c d ( i , j ) = = d ( i , j ∈ [ 1 , n ] ) gcd(i,j)==d (i,j∈[1,n]) gcd(ij)==d(i,j[1,n]),所以 i i i j j j就都是d的倍数了。因为 i i i j j j都是d的倍数,所以求count(d)的问题也就转换城了求最大公约数为1的个数即求count(1)。
g c d ( i , j ) = = d ( i , j ∈ [ 1 , n ] ) gcd(i,j)==d (i,j∈[1,n]) gcd(ij)==d(i,j[1,n]) = > => => g c d ( i , j ) = = 1 ( i , j ∈ [ 1 , n / d ] ) gcd(i,j)==1(i,j∈[1,n/d]) gcd(ij)==1(i,j[1,n/d])
求count(1)也就是求出这个范围内所有互质的数i,j的对数,从而求出 c o u n t ( d ) = ∑ i = 1 n / d φ ( n ) count(d)=\sum_{i=1}^{n/d}{φ(n)} count(d)=i=1n/dφ(n)

时间复杂度: O ( n 2 ) O(n^2) O(n2)

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int mod=1e9+7,N=1e7+10;
ll euler[N],s[N],primes[N];
ll cnt;
bool st[N];
//欧拉筛
void get_eulers(int n)
{
    euler[1]=1;
    for(int i = 2;i <= n;i ++){
        if(!st[i]){
            primes[cnt++] = i;
            euler[i] = i - 1;
        }
        for(int j = 0;primes[j] <= n/i;j ++ ){
            int t=primes[j] * i;
            st[t] = true;
            if(i % primes[j] == 0){
                euler[t] = euler[i] * primes[j];
                break;
            }
            euler[t] = euler[i] * (primes[j] - 1);
        }
    }
    //统计gcd(i,j)==1的数量,并求出前缀和
    s[1]=euler[1];
    for(int i = 2;i <= n;i ++) s[i]=s[i-1]+euler[i] * 2;
}
int main()
{
    int n;
    cin >> n;
    get_eulers(n);

    ll res=0;
    for(int d=1;d<=n;d++) res=(res + s[n/d] * d%mod * d%mod)%mod;
    
    cout<<res % mod<<'\n';
    return 0;
}

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

marvel121

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值