
遗传算法
文章平均质量分 83
遗传算法
九又四分之三站台Emm
好好学习,天天向上
展开
-
遗传算法:二、旅行商问题使用穷举法和遗传算法解决研究
旅行商问题和遗传算法在博客已经有过一些介绍和论述,以下博客中效果实现方式使用的依然是C#和WPF实现。1. 简述问题现在随机产生N个城市点,现在需要将每一个城市点都走一遍,请编写一个最短的算法实现改效果。2. 解决算法前面的旅行商问题中有很多解决方案,本篇博客只使用穷举法和遗传算法实现,并分析其两种算法的优劣。2.1 穷举算法即我们对N个数据进行排列,那么我们获取排列中总长度为最少的路线即可。效果如下:2.2 遗传算法使用前文中对一遗传算法的描述的基本实现,用书本中的话就是说,使用基本遗传原创 2021-03-14 15:00:09 · 1488 阅读 · 0 评论 -
遗传算法:一:遗传算法简介
遗传算法:一:遗传算法简介1. 什么是遗传算法1.1. 遗传算法的科学定义遗传算法(Genetic Algorithm, GA)是模拟达尔文生物进化论的自然选择和遗传学机理的生物进化过程的计算模型,是一种通过模拟自然进化过程搜索最优解的方法。其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,不需要确定的规则就能自动获取和指导优化的搜索空间,自适应地调整搜索方向。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对原创 2021-03-13 13:46:12 · 1579 阅读 · 0 评论 -
旅行商问题是什么以及汇总
旅行商问题(Traveling-Salesman Problem,TSP)1. 问题描述旅行商问题(TravelingSalesmanProblem,TSP)是一个经典的组合优化问题。经典的TSP可以描述为:一个商品推销员要去若干个城市推销商品,该推销员从一个城市出发,需要经过所有城市后,回到出发地。应如何选择行进路线,以使总的行程最短。从图论的角度来看,该问题实质是在一个带权完全无向图中,找一个权值最小的Hamilton回路。由于该问题的可行解是所有顶点的全排列,随着顶点数的增加,会产生组合爆炸,它是原创 2021-03-05 21:18:12 · 4611 阅读 · 0 评论