pytorch
璇焱如柳
这个作者很懒,什么都没留下…
展开
-
pytorch之GPU加速
GPU能大幅提升计算速度,为了达到GPU加速训练的目的,就要将进行运算的数据传入GPU,回想一下神经网络,所有的数据不外乎是模型参数和数据集,所以我们只要将模型参数和数据集传入GPU即可。用 .cuda() 可以达到这个目的class Net(torch.nn.Module): def __init__(self):... #我只是省略了网络详细内容 0.0 d...原创 2020-04-28 12:33:27 · 979 阅读 · 0 评论 -
pytorch在迭代过程中查看网络权值的梯度
for name,param in my_cnn.named_parameters(): print('层:',name,param.size()) print('权值梯度',param.grad) print('权值',param)放在backward()后面...原创 2020-04-25 21:37:36 · 3389 阅读 · 1 评论 -
pytorch中的reshape()、view()、transpose()和flatten()
1、torch.reshape()reshape()可以由torch.reshape(),也可由torch.Tensor.reshape()调用其作用是在不改变tensor元素数目的情况下改变tensor的shape原创 2020-04-24 19:24:43 · 7381 阅读 · 4 评论 -
leaf Variable、requires_grad、grad_fn的含义以及它们之间的关系
1、requires_gradrequires_grad是pytorch中tensor的一个属性,如果requires_grad=True,在进行反向传播的时候会记录t该tensor梯度信息。为了下面方便举例,我将进行运算的tensor称为父tensor,运算后的tensor称为子tensor,比如:c=a+b,c就是子tensor,a、b都为父tens...原创 2020-04-21 14:31:37 · 8278 阅读 · 4 评论