leaf Variable、requires_grad、grad_fn的含义以及它们之间的关系

本文深入解析PyTorch中的requires_grad、grad_fn及leafVariable概念,详细阐述它们在反向传播算法中的作用,以及如何影响梯度的计算与记录。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章内容皆为个人理解,不足之处敬请指正。

1、requires_grad
requires_grad是pytorch中tensor的一个属性,如果requires_grad=True,在进行反向传播的时候会记录t该tensor梯度信息。为了下面方便举例,我将进行运算的tensor称为父tensor,运算后的tensor称为子tensor,比如:c=a+b,c就是子tensor,a、b都为父tensor。

import torch
a=torch.tensor([1.,2,3,4],requires_grad=True)
b=torch.tensor([1.,2,3,4],requires_grad=False) #默认False
c=torch.sum(a*2)
c.backward()
print(a.grad)

d=torch.sum(b+a)
d.backward()
print(b.grad)
print(b.requires_grad)
'''结果
tensor([2., 2., 2., 2.])
None
True   #只要父tensor里有requires_grad=True的,子tensor的requires_grad=True
'''

可以看到requires_grad=True时进行反向传播会记录tensor的梯度信息,很方便我们使用梯度下降法。

2、grad_fn
grad_fn也是tensor的一个属性,它记录的是tensor的运算信息,比如c=a+b,那么c.grad_fn=<AddBackward0>,记录grad_fn信息的意义有利于我们使用反向传播算法,由子tensor计算父tensor的梯度。

import torch
a=torch.tensor([1.,2,3,4],requires_grad=True)
b=torch.tensor([1.,2,3,4],requires_grad=False) #默认false
c=a+b
print(a.grad_fn,b.grad_fn)
print(c.grad_fn)
print(c)
'''结果
None None
<AddBackward0 object at 0x000002293EBCE7B8>
tensor([2., 4., 6., 8.], grad_fn=<AddBackward0>)
'''

a、b是直接创建的、没有经过运算的tensor,其grad_fn=None,还有一个值得注意的地方,如果父tensor的requires_grad都为False,子tensor的grad_fn=None。因为你都不准备记录父tensor的梯度信息了,那么再记录子tensor的grad_fn信息也没什么必要了。

import torch
a=torch.tensor([1.,2,3,4],requires_grad=False)
b=torch.tensor([1.,2,3,4],requires_grad=False) #默认false
c=a+b
print(c.grad_fn)
print(c)
'''结果
None
tensor([2., 4., 6., 8.])
'''

3、leaf Variable
在写leaf Variable之前,我想先写一下Variable,可以帮助理清leaf Variable、requires_grad、grad_fn之间的关系。我们都知道,用pytorch搭建神经网络,数据都是tensor类型的,在先前的一些pytorch版本中(到底哪些我也不清楚,当前v1.3.1),tensor似乎只包含data信息,不会记录requires_grad、grad_fn信息,转化成variable之后才会有requires_grad和grad_fn属性。现在Variable基本可以被直接用tensor替代了,虽然现在还保留着Variable方法,我觉得用不到了,直接用tensor就可以了。

#Variable的使用
from torch.autograd import Variable
a=Variable(tensor,requires_gard=bool)

leaf variable,你直接理解为手动创建的tensor也无妨,运算得到的tensor都不是leaf variable,可以用 .is_leaf查看tensor是否为leaf variable。

import torch
a=torch.tensor([1.,2,3,4],requires_grad=True)
b=torch.tensor([1.,2,3,4],requires_grad=False) #默认false
c=a+b
print(a.is_leaf)
print(c.is_leaf)
'''结果
True
False
'''

如果只这么理解,我觉得也足够了。

但其实还有一类经过运算得到的tensor也可以为leaf variable,那就是父tensor的requires_grad全为False的子tensor,

import torch
a=torch.tensor([1.,2,3,4],requires_grad=False)
b=torch.tensor([1.,2,3,4],requires_grad=False) #默认false
c=a+b
print(c.is_leaf)
print(c.grad_fn)
'''结果
True
None
'''

所以,更准确的来说,应该是grad_fn为None的tensor都是leaf variable,反之皆不是。我们可以例子中的c=a+b看作是一种直接创建tensor的方法,因为父tensor a和b除了进行c=a+b运算创建c之外,以后的反向传播算法以及我们关心的梯度,跟他俩都没关系(这儿可以把a、b、c当成神经网络底层的一部分),所以,从c才可能开始与梯度打交道。

<think>好的,我现在需要解决用户的问题:为什么通过PyTorch中的nn.Parameter()创建的参数不是叶节点?以及如何解决这个问题。首先,我得回忆一下PyTorch中的叶节点和非叶节点的定义,以及nn.Parameter的作用。 根据用户提供的引用[^1],叶节点是那些没有grad_fn的张量,比如通过用户直接创建的Tensor或者Variable。而非叶节点是通过运算产生的,有grad_fn属性。引用中还提到,nn.Parameter是将不可训练的Tensor转换为可训练的类型,默认requires_grad=True。但是用户的问题是说,用nn.Parameter创建的参数不是叶节点,这似乎矛盾,因为通常认为参数应该是叶节点。 可能的情况是,当用户通过某些操作创建Parameter时,比如通过运算生成的,虽然这个Parameter本身是参数,但如果它是通过其他张量计算得来的,那么它可能被视为非叶节点。例如,如果用户将一个已有的Parameter进行运算,并将结果赋值给另一个Parameter,这时候新的Parameter可能保留了运算历史,导致它成为非叶节点。 或者,可能用户误解了叶节点的定义。根据引用[^3],只有叶张量(没有grad_fn的张量)才会在反向传播时累积梯度到.grad字段。如果某个Parameter是通过其他操作生成的,比如从另一个Parameter经过某种变换得到,那么这个新的Parameter可能会有grad_fn,因此成为非叶节点。 例如,假设用户定义了一个自定义的层,并在forward函数中对某个Parameter进行了操作,然后将结果赋值给另一个Parameter。这时候,这个新的Parameter可能实际上是由计算得到的,因此带有grad_fn,从而成为非叶节点。 解决方法是确保这些Parameter是直接初始化的,而不是通过计算得到的。比如,应该直接使用nn.Parameter(torch.randn(...))来创建,而不是通过其他运算生成。或者,在需要时使用detach()方法将其从计算图中分离,使其成为叶节点。 此外,可能需要检查是否在模型定义中正确地将参数注册为模型参数,因为如果参数未被正确注册到模块中,可能会导致其被当作中间变量处理。例如,在自定义模块中,应该使用self.param = nn.Parameter(...)来确保参数被正确追踪。 总结起来,nn.Parameter创建的参数是否是叶节点取决于其是否由计算生成。如果参数是直接创建且没有经过任何运算,那么它应该是叶节点。否则,如果它是由其他参数运算得到的,那么它可能成为非叶节点。解决方法包括正确初始化参数,避免不必要的运算,或者手动分离计算图。</think>在PyTorch中,通过`nn.Parameter()`创建的可学习参数是否成为**叶子节点**,取决于其生成方式。以下是原理和解决方法的分步解释: --- ### **1. 叶子节点与非叶子节点的定义** - **叶子节点**:由用户直接创建(如`torch.tensor()`或`nn.Parameter()`),**无`grad_fn`属性**,梯度会直接存储在`.grad`字段中[^1][^3]。 - **非叶子节点**:由其他张量运算生成(如加法、矩阵乘法),**有`grad_fn`属性**,梯度仅作为中间结果暂存,不会保留到`.grad`字段。 --- ### **2. `nn.Parameter()`的默认行为** - `nn.Parameter()`将普通Tensor包装为可训练参数,**默认`requires_grad=True`**,且会被自动注册到所属模块的`parameters()`列表中[^1]。 - **若参数是直接初始化且未参与运算**,例如: ```python self.weight = nn.Parameter(torch.randn(3, 3)) ``` 此时`weight`是叶子节点,无`grad_fn`,梯度可正常累积到`weight.grad`。 --- ### **3. 何时`nn.Parameter()`参数不是叶子节点?** 当参数**由其他张量运算生成**时,例如: ```python # 错误示例:通过运算生成参数 self.weight = nn.Parameter(other_tensor * 2) ``` 此时`weight`会继承`other_tensor * 2`的运算历史,导致: - 拥有`grad_fn`(如`MulBackward`),成为非叶子节点; - 梯度不会累积到`.grad`字段,可能引发训练问题。 --- ### **4. 解决方法** #### **方法1:直接初始化参数** 避免通过运算生成参数,直接使用随机初始化或固定值: ```python self.weight = nn.Parameter(torch.randn(3, 3)) # 直接初始化,是叶子节点 ``` #### **方法2:分离计算图** 若必须通过运算生成参数,使用`.detach()`断开计算图: ```python self.weight = nn.Parameter(other_tensor.detach() * 2) # 分离后成为叶子节点 ``` #### **方法3:检查参数是否被正确注册** 确保参数在模块初始化时通过`self.xxx = nn.Parameter(...)`注册,而非动态生成: ```python class MyModule(nn.Module): def __init__(self): super().__init__() self.weight = nn.Parameter(torch.Tensor(3, 3)) # 正确注册 ``` --- ### **验证是否为叶子节点** ```python param = nn.Parameter(torch.tensor([1.0])) print(param.is_leaf) # True(直接初始化) param = nn.Parameter(torch.tensor([1.0]) * 2) print(param.is_leaf) # False(由运算生成) ``` --- ### **相关引用** - `nn.Parameter`本质是对Tensor的封装,用于标识模型可训练参数。 - 非叶子节点的梯度仅作为中间结果存在,不会被保留到`.grad`字段。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值