spark小文件过多

本文探讨了Spark SQL在处理小文件时遇到的问题及其影响,包括NameNode内存压力和查询性能损耗。分析了小文件产生的原因,如动态分区插入和Shuffle操作。提出了解决方案,如使用分区字段进行shuffle、结合随机值处理倾斜数据、启用Spark SQL的自适应功能,以及调整参数以优化文件数量。实验结果表明,这些方法能有效控制小文件数量并平衡数据倾斜。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是小文件?

生产上,我们往往将Spark SQL作为Hive的替代方案,来获得SQL on Hadoop更出色的性能。因此,本文所讲的是指存储于HDFS中小文件,即指文件的大小远小于HDFS上块(dfs.block.size)大小的文件。

小文件问题的影响

  • 一方面,大量的小文件会给Hadoop集群的扩展性和性能带来严重的影响。NameNode在内存中维护整个文件系统的元数据镜像,用户HDFS的管理;其中每个HDFS文件元信息(位置,大小,分块等)对象约占150字节,如果小文件过多,会占用大量内存,直接影响NameNode的性能。相对的,HDFS读写小文件也会更加耗时,因为每次都需要从NameNode获取元信息,并与对应的DataNode建立连接。如果NameNode在宕机中恢复,也需要更多的时间从元数据文件中加载。

  • 另一方面,也会给Spark SQL等查询引擎造成查询性能的损耗,大量的数据分片信息以及对应产生的Task元信息也会给Spark Driver的内存造成压力,带来单点问题。此外,入库操作最后的commit job操作,在Spark Driver端单点做,很容易出现单点的性能问题。

Spark小文件产生的过程

  1. 数据源本身就是就含大量小文件

  2. 动态分区插入数据,没有Shuffle的情况下,输入端有多少个逻辑分片,对应的HadoopRDD就会产生多少个HadoopPartition,每个Partition对应于Spark作业的Task(个数为M),分区数为N。最好的情况就是(M=N) && (M中的数据也是根据N来预先打散的),那就刚好写N个文件;最差的情况下,每个Task中都有各个分区的记录,那文件数最终文件数将达到M * N个。这种情况下是极易产生小文件的。

比如我们拿TPCDS测试集中的store_sales进行举例, sql如下所示

use tpcds_1t_parquet;

INSERT overwrite table store_sales partition ( ss_sold_date_sk ) SELECT ss_sold_time_sk, ss_item_sk, ss_customer_sk, ss_cdemo_sk, ss_hdemo_sk, ss_addr_sk, ss_store_sk, ss_promo_sk, ss_ticket_number, ss_quantity, ss_wholesale_cost, ss_list_price, ss_sales_price, ss_ext_discount_amt, ss_ext_sales_price, ss_ext_wholesale_cost, ss_ext_list_price, ss_ext_tax, ss_coupon_amt, ss_net_paid, ss_net_paid_inc_tax, ss_net_profit, ss_sold_date_sk FROM tpcds_1t_ext.et_store_sales; 

首先我们得到其执行计划,如下所示,

== Physical Plan ==
InsertIntoHiveTable MetastoreRelation tpcds_1t_parquet, store_sales, Map(ss_sold_date_sk -> None), true, false +- HiveTableScan [ss_sold_time_sk#4L, ss_item_sk#5L, ss_customer_sk#6L, ss_cdemo_sk#7L, ss_hdemo_sk#8L, ss_addr_sk#9L, ss_store_sk#10L, ss_promo_sk#11L, ss_ticket_number#12L, ss_quantity#13, ss_wholesale_cost#14, ss_list_price#15, ss_sales_price#16, ss_ext_discount_amt#17, ss_ext_sales_price#18, ss_ext_wholesale_cost#19, ss_ext_list_price#20, ss_ext_tax#21, ss_coupon_amt#22, ss_net_paid#23, ss_net_paid_inc_tax#24, ss_net_profit#25, ss_sold_date_sk#3L], MetastoreRelation tpcds_1t_ext, et_store_sales 

store_sales的原生文件包含1616逻辑分片,对应生成1616 个Spark Task,插入动态分区表之后生成1824个数据分区加一个NULL值的分区,每个分区下都有可能生成1616个文件,这种情况下,最终的文件数量极有可能达到2949200。1T的测试集store_sales也就大概300g,这种情况每个文件可能就零点几M。

  1. 动态分区插入数据,有Shuffle的情况下,上面的M值就变成了spark.sql.shuffle.partitions(默认值200)这个参数值,文件数的算法和范围和2中基本一致。

比如,为了防止Shuffle阶段的数据倾斜我们可以在上面的sql中加上 distribute by rand(),这样我们的执行计划就变成了,

### 回答1: Spark写文件时避免小文件过多的一种方法是使用"Coalesce"操作来合并小文件。 Coalesce操作可以将多个小文件合并为一个大文件,这样就可以减少小文件的数量。 例如,假设有一个RDD包含了100个小文件,你可以使用以下代码来使用Coalesce操作将它们合并为10个文件: ``` rdd.coalesce(10).saveAsTextFile(outputPath) ``` 需要注意的是,Coalesce操作只能用于减少文件的数量,不能用于增加文件的数量。如果你想增加文件的数量,可以使用"Repartition"操作。 另外,你也可以在Spark作业的配置中设置"spark.sql.shuffle.partitions"参数来控制Spark写文件时生成的文件数量。这个参数用于指定Spark写文件时生成的文件数量,默认值是200。 例如,你可以在Spark作业的配置中设置"spark.sql.shuffle.partitions"参数为100,这样Spark写文件时就会生成100个文件。 ``` val conf = new SparkConf().set("spark.sql.shuffle.partitions", "100") val spark = SparkSession.builder.config(conf).getOrCreate() ``` 还有一种方法是使用自定义的"Partitioner"来控制文件的数量。你可以通过实现"org.apache.spark.Partitioner"接口,并将其传递给"saveAsHadoopFile"或"saveAsNewAPIHadoopFile"方法来实现这种方法。 例 ### 回答2: 在Spark中,可以采用以下几种方法来避免产生过多小文件: 1. 合并小文件:对于产生的小文件,可以选择将其合并成一个较大的文件。可以通过使用`coalesce`或`repartition`方法将数据重新分区,减少输出文件的数量。 2. 增加分区数:通过增加输出数据的分区数,可以将数据均匀地分布到更多的分区上,从而减少每个分区中的数据量,避免产生过多小文件。可以在写文件之前使用`repartition`或`repartitionByRange`方法进行数据重分区。 3. 控制输出文件的大小:可以设置输出文件的最大大小,当达到指定大小时,自动创建新的输出文件。可以通过设置`spark.hadoop.mapreduce.output.fileoutputformat.maxfilesize`参数来控制输出文件的大小。 4. 合并输出文件:可以通过使用`FileUtil`类的`copyMerge`方法将多个小文件合并成一个大文件。这个方法将在Hadoop分布式文件系统上执行文件合并操作。 5. 使用输出格式类:可以使用输出格式类来指定输出数据的格式,例如`TextOutputFormat`和`ParquetOutputFormat`等。这些输出格式类提供了对输出文件的更好控制,可以通过设置参数来控制输出文件的大小和数量。 需要注意的是,在使用以上方法时,需要根据具体的场景和需求来选择合适的方案。同时,也需要权衡时间和空间的消耗,以及对作业性能的影响。 ### 回答3: 在Spark中,为了避免生成过多小文件,可以采取以下几种方法: 1. 合并小文件:将多个小文件合并成一个较大的文件。可以使用`coalesce`或`repartition`方法将RDD或DataFrame的分区数改为较少的数目,从而减少输出的小文件数量。 2. 控制输出分区数:在写入文件时,可以通过设置`writer`的`numPartitions`参数来控制输出文件的分区数。较少的分区数能够减少小文件的数量。 3. 提前聚合:在数据处理过程中,尽量提前进行聚合操作,减少中间结果的数量,从而减少输出的小文件数量。 4. 使用Hive分区:如果数据写入Hive表中,可以合理使用Hive的分区功能。在写入文件之前,将数据按照某个字段进行分区,从而可以有效地避免生成过多小文件。 5. 合理设置输出文件格式:使用合适的文件格式可以减少小文件的数量。例如,使用`csv`格式时,每个RDD分区将生成一个文件,可改为使用`parquet`等格式。 6. 批量写入:避免使用循环逐条写入数据,可以将数据通过批量方式写入,减少小文件的生成。 总结起来,以上方法可以通过合并文件、控制分区数、提前聚合、合理使用Hive分区、选择合适的输出文件格式和批量写入等方式来避免Spark写入过多小文件。通过对数据处理和输出的优化,可以减少小文件的数量,提高Spark任务的性能和效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值