朴素贝叶斯为本分类

文本情感分析的机器学习项目,今天的流程如下:

数据情况和处理
数据情况

这里的数据为大众点评上的评论数据(王树义老师提供),主要就是评论文字和打分。我们首先读入数据,看下数据的情况:

import numpy as np
import pandas as pd
data = pd.read_csv('data1.csv') data.head()
情感划分

对star字段看唯一值,打分有1,2,4,5。

中文文本情感分析属于我们的分类问题(也就是消极和积极),这里是分数,那我们设计代码,让分数小于3的为消极(0),大于3的就是积极(1)。

定义一个函数,然后用apply方法,这样就得到了一个新列(数据分析里的知识点)

def make_label(star):
    if star > 3: return 1 else: return 0 data['sentiment'] = data.star.apply(make_label)
工具包(snownlp)

我们首先不用机器学习方法,我们用一个第三库(snownlp),这个库可以直接对文本进行情感分析(记得安装),使用方法也是很简单。返回的是积极性的概率。

from snownlp import SnowNLP

text1 = '这个东西不错'
text2 = '这个东西很垃圾' s1 = SnowNLP(text1) s2 = SnowNLP(text2) print(s1.sentiments,s2.sentiments) # result 0.8623218777387431 0.21406279508712744

这样,我们就定义大于0.6,就是积极的,同样的方法,就能得到结果。

def snow_result(comemnt):
    s = SnowNLP(comemnt) if s.sentiments >= 0.6: return 1 else: return 0 data['snlp_result'] = data.comment.apply(snow_result)

上面前五行的结果看上去很差(5个就2个是对的),那到底有多少是对的了?我们可以将结果与sentiment字段对比,相等的我就计数,这样在除以总样本,就能看大概的精度了。

counts = 0
for i in range(len(data)): if data.iloc[i,2] == data.iloc[i,3]: counts+=1 print(counts/len(data)) # result 0.763
朴素贝叶斯

前面利用第三库的方法,结果不是特别理想(0.763),而且这种方法存在一个很大的弊端:针对性差。

什么意思了?我们都知道,不同场景下,语言表达都是不同的,例如这个在商品评价中有用,在博客评论中可能就不适用了。

所以,我们需要针对这个场景,训练自己的模型。本文将使用sklearn实现朴素贝叶斯模型(原理在后文中讲解)。slearn小抄先送上(下文有高清下载地址)。

大概流程为:

  • 导入数据
  • 切分数据
  • 数据预处理
  • 训练模型
  • 测试模型
jieba分词

首先,我们对评论数据分词。为什么要分词了?中文和英文不一样,例如:i love python,就是通过空格来分词的;我们中文不一样,例如:我喜欢编程,我们要分成我/喜欢/编程(通过空格隔开),这个主要是为了后面词向量做准备。

import jieba

def chinese_word_cut(mytext): return " ".join(jieba.cut(mytext)) data['cut_comment'] = data.comment.apply(chinese_word_cut)
划分数据集

分类问题需要x(特征),和y(label)。这里分词后的评论为x,情感为y。按8:2的比例切分为训练集和测试集。

X = data['cut_comment']
y = data.sentiment from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=22)
词向量(数据处理)

电脑是没法识别文字的,只能识别数字。那文本怎么处理了,最简单的就是词向量。什么是词向量,我们通过一个案例来说明下,下面是我们的文本:

I love the dog
I hate the dog 

词向量处理后就是这样的:

简单的说,词向量就是我们将整个文本出现的单词一一排列,然后每行数据去映射到这些列上,出现的就是1,没出现就是0,这样,文本数据就转换成了01稀疏矩阵(这也是上文中文分词的原因,这样一个词就是一个列)。

好在,sklearn中直接有这样的方法给我们使用。CountVectorizer方法常用的参数:

  • max_df:在超过这一比例的文档中出现的关键词(过于平凡),去除掉。
  • min_df:在低于这一数量的文档中出现的关键词(过于独特),去除掉。
  • token_pattern:主要是通过正则处理掉数字和标点符号。
  • stop_words:设置停用词表,这样的词我们就不会统计出来(多半是虚拟词,冠词等等),需要列表结构,所以代码中定义了一个函数来处理停用词表。
from sklearn.feature_extraction.text import CountVectorizer

def get_custom_stopwords(stop_words_file): with open(stop_words_file) as f: stopwords = f.read() stopwords_list = stopwords.split('\n') custom_stopwords_list = [i for i in stopwords_list] return custom_stopwords_list stop_words_file = '哈工大停用词表.txt' stopwords = get_custom_stopwords(stop_words_file) vect = CountVectorizer(max_df = 0.8, min_df = 3, token_pattern=u'(?u)\\b[^\\d\\W]\\w+\\b', stop_words=frozenset(stopwords))

如果想看到底出来的是什么数据,可通过下面代码查看。

test = pd.DataFrame(vect.fit_transform(X_train).toarray(), columns=vect.get_feature_names()) test.head()
训练模型

训练模型,很简单,用的是朴素贝叶斯算法,结果为0.899,比之前的snownlp好很多了。

from sklearn.naive_bayes import MultinomialNB
nb = MultinomialNB() X_train_vect = vect.fit_transform(X_train) nb.fit(X_train_vect, y_train) train_score = nb.score(X_train_vect, y_train) print(train_score) # result 0.899375
测试数据

当然,我们需要测试数据来验证精确度了,结果为0.8275,精度还是不错的。

X_test_vect = vect.transform(X_test) print(nb.score(X_test_vect, y_test)) # result 0.8275

当然,我们也可以将结果放到data数据中:

X_vec = vect.transform(X) nb_result = nb.predict(X_vec) data['nb_result'] = nb_result
讨论和不足
  • 样本量少
  • 模型没调参
  • 没有交叉验证

转载于:https://www.cnblogs.com/flymin/p/11352006.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值