ACM2-1023

Problem Description
Fill the following 8 circles with digits 1~8,with each number exactly once . Conntcted circles cannot be filled with two consecutive numbers.<br>There are 17 pairs of connected cicles:<br>A-B , A-C, A-D<br>B-C, B-E, B-F<br>C-D, C-E, C-F, C-G<br>D-F, D-G<br>E-F, E-H<br>F-G, F-H<br>G-H<br><center><img src=../../../data/images/C150-1010-1.jpg></center><br>Filling G with 1 and D with 2 (or G with 2 and D with 1) is illegal since G and D are connected and 1 and 2 are consecutive .However ,filling A with 8 and B with 1 is legal since 8 and 1 are not consecutive .<br><br>In this problems,some circles are already filled,your tast is to fill the remaining circles to obtain a solution (if possivle).<br>
 

Input
The first line contains a single integer T(1≤T≤10),the number of test cases. Each test case is a single line containing 8 integers 0~8,the numbers in circle A~H.0 indicates an empty circle.<br><br>
 

Output
For each test case ,print the case number and the solution in the same format as the input . if there is no solution ,print “No answer”.If there more than one solution,print “Not unique”.<br>
 

Sample Input
3<br>7 3 1 4 5 8 0 0<br>7 0 0 0 0 0 0 0<br>1 0 0 0 0 0 0 0<br>
 

Sample Output
Case 1: 7 3 1 4 5 8 6 2<br>Case 2: Not unique<br>Case 3: No answer<br>
 

Source
ECJTU 2008 Autumn Contest
 
继续使用深度优先搜索
#include<stdio.h>  
#include<math.h>  
#include<string.h>  
int a[10],vis[10],ans[10],anscnt;  
int abs(int q)  
{  
    if(q<0) return -q;  
    return q;  
}  
int ok()  
{  
    if(abs(a[2]-a[1])!=1&&  
        abs(a[3]-a[1])!=1&&  
        abs(a[4]-a[1])!=1&&  
          
        abs(a[2]-a[3])!=1&&  
        abs(a[2]-a[5])!=1&&  
        abs(a[2]-a[6])!=1&&  
          
        abs(a[3]-a[4])!=1&&  
        abs(a[3]-a[5])!=1&&  
        abs(a[3]-a[6])!=1&&  
        abs(a[3]-a[7])!=1&&  
          
        abs(a[4]-a[6])!=1&&  
        abs(a[4]-a[7])!=1&&  
          
        abs(a[5]-a[6])!=1&&  
        abs(a[5]-a[8])!=1&&  
          
        abs(a[6]-a[7])!=1&&  
        abs(a[6]-a[8])!=1&&  
          
        abs(a[7]-a[8])!=1  
        )  
        return 1;  
    else return 0;  
}  
void DFS(int k)  
{  
    int i,cnt=0;  
    if(k==9)  


        {  
            if(ok())  
            {  
                anscnt++;  
                if(anscnt==1)  
                {  
                    for(i=1;i<=8;i++)  
                        ans[i]=a[i];  
                }  
            }  
            return;  
        }  
    if(anscnt>=2) return;  
    if(a[k]!=0) DFS(k+1);  
    else  
        for(i=1;i<=8;i++)  
        {  
            if(!vis[i])  
            {  
                a[k]=i;  
                vis[i]=1;  
                DFS(k+1);  
                a[k]=0;  
                vis[i]=0;  
            }  
        }  
}  
  
int main()  
{  
    int t,cas=0;  
    scanf("%d",&t);  
    while(t--)  
    {  
        anscnt=0;  
        int i;  
        memset(vis,0,sizeof(vis));  
        memset(ans,0,sizeof(ans));  
        scanf("%d %d %d %d %d %d %d %d",&a[1],&a[2],&a[3],&a[4],&a[5],&a[6],&a[7],&a[8]);  
        for(i=1;i<=8;i++) vis[a[i]]=1;  
        DFS(1);  
        printf("Case %d: ",++cas);  
        if(anscnt==1)  
        {  
            for(i=1;i<8;i++)  printf("%d ",ans[i]);  
            printf("%d\n",ans[i]);  
        }  
        else if(anscnt==0) printf("No answer\n");  
        else printf("Not unique\n");  
    }  
    return 0;  
}  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值