【POJ3321】Apple Tree 苹果树 线段树

本文介绍了一种利用树状数组和线段树解决树形DP问题的方法,具体针对在一个树结构中改变节点权值并询问以某节点为根的子树权值和的问题。通过预处理DFS序,将树上的操作转化为序列上的操作,使用树状数组和线段树高效更新和查询节点权值。
摘要由CSDN通过智能技术生成

题目描述

  有一棵N个结点的树,一开始每个结点上都有一个苹果,每次有两种操作:
   (1)C x:如果x结点上有一个苹果,那么摘下它,否则x节点上会再生出一个苹果;
   (2)Q x:询问以x结点为根的子树中苹果的个数;
   你要对于每个Q操作,输出对应的答案。

题目大意

树上改变一个节点的权值,询问以一个点的子树的权值和。

数据范围

n,q<=10^5

样例输入

3
1 2
1 3
3
Q 1
C 2
Q 1

样例输出

3
2

解题思路

  首先求出dfs序,则可以将树上的操作改为序列上的操作,记f[x][0]为x第一次出现的位置,f[x][1]为x第二次出现的位置。故答案就是

i=f[x][0]f[x][1]vl[i]2
也就成为了普通的线段树(树状数组)的题目了。

代码

#include <algorithm>
#include <iostream>
#include <cstring>
#include <cstdlib>
#include <cstdio>
#include <cmath>
#define Maxn 100005
using namespace std;
inline int Getint(){int x=0,f=1;char ch=getchar();while('0'>ch||ch>'9'){if(ch=='-')f=-1;ch=getchar();}while('0'<=ch&&ch<='9'){x=x*10+ch-'0';ch=getchar();}return x*f;}
inline char Getch(){
    char ch=getchar();
    while(ch!='C'&&ch!='Q')ch=getchar();
    return ch;
}
int f[Maxn][2],h[Maxn],cnt=0;
bool w[Maxn];
struct node{int to,next;}e[Maxn*2];
void AddEdge(int x,int y){e[++cnt]=(node){y,h[x]};h[x]=cnt;}
void dfs(int x,int L){
    f[x][0]=++cnt;
    for(int p=h[x];p;p=e[p].next){
        int y=e[p].to;
        if(y==L)continue;
        dfs(y,x);
    }
    f[x][1]=++cnt;
}
struct NODE{
    int L,r,Sum;
}Tree[Maxn*4*2];
void PushUp(int v){
    Tree[v].Sum=Tree[2*v].Sum+Tree[2*v+1].Sum;
}
void Build(int v,int L,int r){
    Tree[v]=(NODE){L,r,L==r};
    if(L==r)return;
    Build(v*2,L,(L+r)/2);
    Build(v*2+1,(L+r)/2+1,r);
    PushUp(v);
}
int Ask(int v,int L,int r){
    if(r<Tree[v].L||Tree[v].r<L)return 0;
    if(L<=Tree[v].L&&Tree[v].r<=r)return Tree[v].Sum;
    return Ask(2*v,L,r)+Ask(2*v+1,L,r);
}
void Modify(int v,int pos,int vl){
    if(!v)return;
    if(pos<Tree[v].L||Tree[v].r<pos)return;
    if(Tree[v].L==Tree[v].r){
        Tree[v].Sum+=vl;
        return;
    }
    Modify(2*v,pos,vl);
    Modify(2*v+1,pos,vl);
    PushUp(v);
}
int main(){
    memset(w,1,sizeof(w));
    int n=Getint();
    for(int i=1;i<n;i++){
        int x=Getint(),y=Getint();
        AddEdge(x,y);
        AddEdge(y,x);
    }
    cnt=0;
    dfs(1,0);
    Build(1,0,n*2+2);
    int q=Getint();
    while(q--){
        char ch=Getch();
        if(ch=='Q'){
            int x=Getint();
            cout<<(Ask(1,f[x][0],f[x][1]))/2<<"\n";
        }else{
            int x=Getint();
            if(w[x])Modify(1,f[x][0],-1),Modify(1,f[x][1],-1),w[x]^=1;
            else Modify(1,f[x][0],1),Modify(1,f[x][1],1),w[x]^=1;
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/Cedric341561/p/6811025.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值