研究背景
随着工业物联网(IIoT)的规模不断扩大,边缘设备每天都将产生大量数据。然而,大多数IIoT数据以数据孤岛的形式存在,这使得跨域安全共享数据变得困难。为此,提出了一种基于区块链和联邦学习的工业物联网安全数据共享方案。
工业物联网(IIoT)是物联网的一个重要分支,专注于应用于工业领域的互联设备和系统。它利用物联网的核心技术,如传感器、通信技术、云计算和大数据分析,实现设备之间的数据交互和协作。工业物联网通过连接和集成工厂设备、传感器、控制系统和企业级应用软件,将实时数据、操作状态和生产信息整合在一起,为企业提供智能化的生产和管理。
相关介绍
众所周知,随着训练数据的增加和多样化,机器学习的模型性能会越来越好。然而,工业物联网(IIoT)实体往往缺乏信任,也有人对工业物联网(IIoT)数据共享平台持怀疑态度。这是进行数据共享的巨大障碍。为了解决数据共享安全性问题,想到了联邦学习算法。
联邦学习(FL)是一种协作分布式学习框架,其中参与协作的节点使用其本地数据训练模型。该方法通过聚合多方模型参数实现数据共享,减少模型偏差。不仅保留了数据的异构性,而且所有数据都保存在本地设备上,保证了原始数据的隐私性和安全性。但是,联邦学习算法也不是绝对的安全,因为集中式参数服务器可能受到单点攻击从而泄漏模型数据,此外传统的联邦学习框架不能有效的防止恶意节点的投毒攻击。因此又想到了区块链。
区块链由于其独特的去中心化、不可篡改性和可追溯性而受到了广泛的关注。区块链上的数据由点对点网络上的节点共同维护,使彼此不信任的多方能够交换价值。
现有的基于区块链的联邦学习IIoT数据共享方案仍然存在几个问题:
- 泄露中间隐私参数。联邦学习避免了原始IIoT数据泄漏的问题。但是,由于区块链账本的开放透明特性,当模型参数显式存储在区块链上时,仍然存在中间参数隐私泄露的问题,尤其是梯度隐私泄露。
- 联合节点的多方信任问题。在模型聚合过程中,可能会有半诚实或恶意的IIoT节点毒害全局模型,威胁全局模型的正确性和安全性。
- 现有的计划缺乏足够的激励和有效的共识。缺乏足够的激励来吸引更多的IIoT节点参与联邦学习任务,导致IIoT数据的利用效率低下。同时,传统的共识机制无法保证参与共享节点利益的公平性。
系统框架
该系统由四个主要部分组成:任务发布者、参与者、共识委员会和区块链。
- 1.初始化模型参数
- 2.下载模型参数
- 3.本地模型训练
- 4.上传本地参数模型
- 5.下载模型参数
- 6.验证本地更新
- 7.节点评估
- 8.多权重主体逻辑模式 8.1评估节点局部模型参数的质量 8.2记录参与节点的交互 8.3当地声誉和推荐意见 8.4产生全面声誉
- 9.节点评估值
- 10.聚合全局参数
- 11.更新全局模型参数
- 12.下载最终全局参数