这个功能,使用到了spring aop、redis来进行完成。具体思路是:使用aop对每个请求进行环绕通知,在每次请求的时候,都进行拦截,根据拦截的接口的方法名进行区分,在redis中创建不同的key,相同的key进行累加。然后可以定时将redis的请求统计写到数据库中。
具体代码实现:
aop代码:
@Aspect
@Component
public class CountOfTimesAop {
@Autowired
private RedisUtil redisUtil;
@Pointcut("execution(* com.office.controller.synchronize.*.*(..)) || execution(* com.office.controller.*.*(..))")
public void pointCut() {
}
@Around("pointCut()")
public Object around(ProceedingJoinPoint joinPoint) throws Throwable {
String key = RedisKeyPrefixConstants.TENANT_Call_LOGS + joinPoint.getSignature().getName() + "#" + DateUtil.format(new Date(), "yyyy/MM/dd");
redisUtil.increment(key);
redisUtil.expire(key,24, TimeUnit.HOURS);
return joinPoint.proceed();
}
}
redis工具类:
@Component
@RequiredArgsConstructor
public class RedisUtil {
@NonNull
public RedisTemplate redisTemplate;
/**
* 缓存基本的对象,Integer、String、实体类等
*
* @param key 缓存的键值
* @param value 缓存的值
*/
public <T> void setCacheObject(final String key, final T value) {
redisTemplate.opsForValue().set(key, value);
}
/**
* 缓存基本的对象,Integer、String、实体类等
*
* @param key 缓存的键值
* @param value 缓存的值
* @param timeout 时间
* @param timeUnit 时间颗粒度
*/
public <T> void setCacheObject(final String key, final T value, final long timeout, final TimeUnit timeUnit) {
redisTemplate.opsForValue().set(key, value, timeout, timeUnit);
}
/**
* 单机redis 锁
*
* @param key setNX的key
* @param value sexNX的值
*/
public <T> boolean setCacheObjectNX(final String key, final T value) {
return Boolean.TRUE.equals(redisTemplate.opsForValue().setIfAbsent(key, value));
}
/**
* 单机redis 锁
*
* @param key setNX的key
* @param value sexNX的值
* @param timeout 时间
* @param timeUnit 时间颗粒度
*/
public <T> boolean setCacheObjectNX(final String key, final T value,final long timeout, final TimeUnit timeUnit) {
return Boolean.TRUE.equals(redisTemplate.opsForValue().setIfAbsent(key, value,timeout,timeUnit));
}
/**
*
* @param buildLockKey : 锁名称
* @return
*/
public boolean tryLock(String buildLockKey){
String lockValue = IdUtil.simpleUUID()+ Thread.currentThread().getName();
//尝试加锁,锁失效时间为 1 分钟,覆盖业务时间
return this.setCacheObjectNX( buildLockKey, lockValue, RedisLockConstants.DEFAULT_EXPIRE_TIME, TimeUnit.SECONDS );
}
/**
* 设置有效时间
*
* @param key Redis键
* @param timeout 超时时间
* @return true=设置成功;false=设置失败
*/
public boolean expire(final String key, final long timeout) {
return Boolean.TRUE.equals(expire(key, timeout, TimeUnit.SECONDS));
}
/**
* 设置有效时间
*
* @param key Redis键
* @param timeout 超时时间
* @param unit 时间单位
* @return true=设置成功;false=设置失败
*/
public boolean expire(final String key, final long timeout, final TimeUnit unit) {
return Boolean.TRUE.equals(redisTemplate.expire(key, timeout, unit));
}
/**根据key获取过期时间*/
public Long getExpire(final String key){
return redisTemplate.getExpire(key);
}
/** 判断key是否存在*/
public boolean hasKey(final String key){
return Boolean.TRUE.equals(redisTemplate.hasKey(key));
}
/**
* 获得缓存的基本对象。
*
* @param key 缓存键值
* @return 缓存键值对应的数据
*/
public <T> T getCacheObject(final String key) {
ValueOperations<String, T> operation = redisTemplate.opsForValue();
return operation.get(key);
}
// /**
// * keys *pattern*
// *
// * @param
// * @return 缓存键值对应的数据
// */
// public Set<String> keys(String pattern) {
//
// return redisTemplate.keys(pattern);
//
// }
/**
* 删除单个对象
*/
public boolean deleteObject(final String key) {
return Boolean.TRUE.equals(redisTemplate.delete(key));
}
/**
* 删除集合对象
*
* @param collection 多个对象
*/
public long deleteObject(final Collection collection) {
Long delete = redisTemplate.delete(collection);
return ObjectUtil.isNull(delete) ? 0 :delete;
}
/**
* 删除指定前缀key
*
* @param
*/
public long deleteObjectPrefix(final String pattern) {
// 获取Redis中特定前缀
Set<String> keys = redisTemplate.keys(pattern);
// 删除
Long delete = redisTemplate.delete(keys);
return ObjectUtil.isNull(delete) ? 0 :delete;
}
/**
* 缓存List数据
*
* @param key 缓存的键值
* @param dataList 待缓存的List数据
* @return 缓存的对象
*/
public <T> long setCacheList(final String key, final List<T> dataList) {
Long count = redisTemplate.opsForList().rightPushAll(key, dataList);
return count == null ? 0 : count;
}
/**
* 获得缓存的list对象
*
* @param key 缓存的键值
* @return 缓存键值对应的数据
*/
public List getCacheList(final String key) {
return redisTemplate.opsForList().range(key, 0, -1);
}
/**
* 缓存Set
*
* @param key 缓存键值
* @param dataSet 缓存的数据
* @return 缓存数据的对象
*/
public <T> BoundSetOperations<String, T> setCacheSet(final String key, final Set<T> dataSet) {
BoundSetOperations<String, T> setOperation = redisTemplate.boundSetOps(key);
for (T t : dataSet) {
setOperation.add(t);
}
return setOperation;
}
/**
* 获得缓存的set
*/
public <T> Set<T> getCacheSet(final String key) {
return redisTemplate.opsForSet().members(key);
}
/**
* 缓存Map
*/
public <T> void setCacheMap(final String key, final Map<String, T> dataMap) {
if (dataMap != null) {
redisTemplate.opsForHash().putAll(key, dataMap);
}
}
/**
* 获得缓存的Map
*/
public <T> Map<String, T> getCacheMap(final String key) {
return redisTemplate.opsForHash().entries(key);
}
/**
* 往Hash中存入数据
*
* @param key Redis键
* @param hKey Hash键
* @param value 值
*/
public <T> void setCacheMapValue(final String key, final String hKey, final T value) {
redisTemplate.opsForHash().put(key, hKey, value);
}
/**
* 获取Hash中的数据
*
* @param key Redis键
* @param hKey Hash键
* @return Hash中的对象
*/
public <T> T getCacheMapValue(final String key, final String hKey) {
HashOperations<String, String, T> opsForHash = redisTemplate.opsForHash();
return opsForHash.get(key, hKey);
}
/**
* 删除Hash中的数据
*/
public void delCacheMapValue(final String key, final String hKey) {
HashOperations hashOperations = redisTemplate.opsForHash();
hashOperations.delete(key, hKey);
}
/**
* 获取多个Hash中的数据
*
* @param key Redis键
* @param hKeys Hash键集合
* @return Hash对象集合
*/
public <T> List<T> getMultiCacheMapValue(final String key, final Collection<Object> hKeys) {
return redisTemplate.opsForHash().multiGet(key, hKeys);
}
/**
* 返回指定指定的所有key
* @param pattern 字符串前缀
* @return 对象列表
*/
public Collection<String> keys(final String pattern) {
return redisTemplate.keys(pattern);
}
/**
* 返回指定指定的所有key,使用全匹配
* @param pattern 字符串前缀
* @return 对象列表
*/
public Collection<String> keysLike(final String pattern) {
return redisTemplate.keys("*"+pattern+"*");
}
/**
* 返回指定指定的所有key,使用右匹配
* @param pattern 字符串前缀
* @return 对象列表
*/
public Collection<String> keysRightLike(final String pattern) {
return redisTemplate.keys(pattern+"*");
}
/**
* 返回指定指定的所有key,使用左匹配
* @param pattern 字符串前缀
* @return 对象列表
*/
public Collection<String> keysLeftLike(final String pattern) {
return redisTemplate.keys("*"+pattern);
}
/**
* 根据键值对进行累加计数
* @param key 键值
*/
public void increment(String key) {
redisTemplate.opsForValue().increment(key);
}
public String getIncrement(String key) {
return redisTemplate.opsForValue().get(key).toString();
}
}
定时任务将数据写到数据库中:
@Slf4j
@Component
public class ScheduleTask {
@Autowired
private ServiceLogsDao serviceLogsDao;
@Autowired
private RedisUtil redisUtil;
@Scheduled(cron = "0 0/5 * * * ?")
public void init() {
Collection<String> keys = redisUtil.keysRightLike(RedisKeyPrefixConstants.TENANT_Call_LOGS);
String countDate = DateUtil.format(new Date(), "yyyy/MM/dd");
//拿到当天时间的
List<String> list = keys.stream().filter(key -> key.contains(countDate)).toList();
//缓存没有,结束
if(CollUtil.isEmpty(list))return;
List<ServiceCallLogs> serviceCallLogsArrayList = new ArrayList<>(list.size());
for (String redisDate : list) {
//组装对象,这里相关代码没有编写,看实际情况完成。
}
if(CollUtil.isEmpty(serviceCallLogsArrayList))return;
//存入mysql 存在则更新
serviceLogsDao.getBaseMapper().replaceInsert(serviceCallLogsArrayList);
}
}