思路分析:
这是一道基于等差数列的问题。
取沙漏的上半部分为研究对象:
从底向上*号个数分别为1、3、5、7……不难发现,该数列为首项为1,差为2的等差数列。通项公式为2n-1,前n项和为n2, 沙漏下方同理。
取整个沙漏为研究对象,则整个沙漏的 *号个数为2n2-1。n可求。
综上,可先求上半部分,然后反转得到下半部分。
值得注意的是:1. 星号右方是没有空格的;2. 即使所有符号都用上最后也要输出数字0。
代码示例:
#include<iostream>
#include<math.h>
#include<stack>
using namespace std;
int main() {
int num;
char ch;
cin >> num >> ch;
int n = sqrt((num+1)/2);
int sum = 2*n * n-1;//根据n求等差数列之和
stack<string> sta;
int topLine = 2*n-1;//等差数列an项的值
//打印上三角行数为n(包括最底下只有一个星的一行)沙漏
for (int i = 0; i < n; i++) {//控制打n行
string str;
for (int j = 0; j < i; j++) {//控制打空格
str += " ";
}
for (int k = 0; k < topLine; k++) {//打符号
str += ch;
}
cout << str;
sta.push(str);
cout << endl;
topLine -= 2;
}
sta.pop();//第一项没用,舍弃
while (!sta.empty()) {
cout<<sta.top();
cout << endl;
sta.pop();
}
int rest = num - sum;
cout << rest << endl;
return 0;
}