编程学习笔记14--并查集的问题

并查集

Union-Find Set或Disjoint Set(不相交集合),将编号分别为1…N的N个对象划分为不相交集合,在每个集合中,选择其中某个元素代表所在集合。

常见的操作

合并两个集合;将一元素并入另一集体;判断两个元素是否属于同一个集合;每个集合用一棵“有根树”表示.

实现方法

每个集合用一棵“有根树”表示,定义数组 set[1..n],set[i] = i , 则i表示本集合,并是集合对应树的根,set[i] = j, j!=i, 则 j 是 i 的父节点.

树形结构,只需记录每个结点的父结点即可,每棵树表示一个集合,树的根作为集合的“代表元”。

对于查找操作 ,实际上沿着父指针,向上找到根即可

对于合并操作 :只要把一个集合的根节点和另一个集合连接就可以了。

判断是否属于同一个集合的方法 :由此用某个元素所在树的根结点表示该元素所在的集合,判断两个元素时候属于同一个集合的时候,只需要判断他们所在树的根结点是否一样

即可也就是说,当我们合并两个集合的时候,只需要在两个根结点之间连边即可


HDOJ 1232 Problem Description

某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?

测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。
注意:两个城市之间可以有多条道路相通,也就是说  3 3    1 2    1 2    2 1   这种输入也是合法的
当N为0时,输入结束,该用例不被处理。
对每个测试用例,在1行里输出最少还需要建设的道路数目。

地图上若干城镇都可以看作点,已知哪些对城镇之间是有道路直接相连的。最后要解决的是整幅图的连通性问题,即求整幅图一共有几个连通分支,也就是被分成了几个互相独立的块。
畅通工程这题,问还需要修几条路,实质就是求有几个连通分支。如果是1个连通分支,说明整幅图上的点都连起来了,不用再修路了;如果是2个连通分支,则只要再修1条路,从两个分支中各选一个点,把它们连起来,那么所有的点都是连起来的了;如果是n个连通分支,则只要再修n-1条路。

#include<stdio.h>
#define M 1000
int F[M];//并查集的根节点保存的数组
void Init(int *F)//初始化
{
    int i=0;
    for(i=0;i<M;i++)
        F[i]=i;
}
int find(int x)//查找元素所在的集合
{
    while(F[x]!=x)
    {
       x=F[x];
    }
    return x;
}
void Union(int u, int v)
{
	int s1 = find(u), s2 = find(v);
	if (s1 != s2) F[s1] = s2;
}
int main()
{
    int n,m;//城镇数目n和道路数目m
    int m_a,m_b;//m行测试数据的对应的两个数据,表示城镇ma和mb之间联通
    int i,count=0;
    freopen("input.txt","r",stdin);
    while(scanf("%d %d",&n,&m))
    {
        count=0;
        if(n==0)
        break;
        Init(F);
        while(m--)
        {
            scanf("%d %d",&m_a,&m_b);//把两个节点结合起来
            Union(m_a,m_b);
        }
        for(i=1;i<=n;i++)
        {
            if(F[i]==i)
            {
                count++;
            }
        }
        printf("%d\n",count-1);//因为如果全部连接起来的话,根节点的还是会有i还是满足i=F[i]的。
    }
}

优化——路径压缩

思想:每次查找的时候,如果路径较长,则修改信息,以便下次查找的时候速度更快。

第一步,找到根结点
第二步,修改查找路径上的所有节点,将它们都指向根结点




带路径压缩的查找算法
int find(int x)
{
    int k, j, r;
    r = x;
    while(r != parent[r])     //查找跟节点
        r = parent[r];      //找到跟节点,用r记录下
    k = x;        
    while(k != r)             //非递归路径压缩操作
    {
        j = parent[k];         //用j暂存parent[k]的父节点
        parent[k] = r;        //parent[x]指向跟节点
        k = j;                    //k移到父节点
    }
    return r;         //返回根节点的值            
}

int find(int x)       //查找x元素所在的集合,回溯时压缩路径
{
    if (x != parent[x])
    {
        parent[x] = find(parent[x]);     //回溯时的压缩路径
    }         //从x结点搜索到祖先结点所经过的结点都指向该祖先结点
    return parent[x];
}
//采用递归的方式压缩路径, 但是,递归压缩路径可能会造成溢出栈









评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值