(用树状数组实现的单点修改和区间查询)
在完成了分配任务之后,西部 314 来到了楼兰古城的西部。
相传很久以前这片土地上(比楼兰古城还早)生活着两个部落,一个部落崇拜尖刀(V
),一个部落崇拜铁锹(∧
),他们分别用 V
和 ∧
的形状来代表各自部落的图腾。
西部 314 在楼兰古城的下面发现了一幅巨大的壁画,壁画上被标记出了 n 个点,经测量发现这 n 个点的水平位置和竖直位置是两两不同的。
西部 314 认为这幅壁画所包含的信息与这 n 个点的相对位置有关,因此不妨设坐标分别为 (1,y1),(2,y2),…,(n,yn),其中 y1∼yn 是 1 到 n 的一个排列。
西部 314 打算研究这幅壁画中包含着多少个图腾。
如果三个点 (i,yi),(j,yj),(k,yk) 满足 1≤i<j<k≤n 且 yi>yj,yj<yk,则称这三个点构成 V
图腾;
如果三个点 (i,yi),(j,yj),(k,yk) 满足 1≤i<j<k≤n 且 yi<yj,yj>yk,则称这三个点构成 ∧
图腾;
西部 314 想知道,这 n 个点中两个部落图腾的数目。
因此,你需要编写一个程序来求出 V
的个数和 ∧
的个数。
输入格式
第一行一个数 n。
第二行是 n 个数,分别代表 y1,y2,…,yn。
输出格式
两个数,中间用空格隔开,依次为 V
的个数和 ∧
的个数。
数据范围
对于所有数据,n≤200000,且输出答案不会超过 int64。
y1∼yn 是 1 到 n 的一个排列。
输入样例:
5
1 5 3 2 4
输出样例:
3 4
思路:对于每一个点求出左边有多少个点比它大和右边有多少个点比它大,两个数字相乘就是这个点的答案,每个点相加就是‘v’的答案,‘^’的答案同理。
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'
using namespace std;
typedef pair<int, int> PII;
typedef long long ll;
const int N = 200010;
int n;
int a[N], Greater[N], Lower[N];
int tr[N];
inline int lowbit(int x)
{
return x & -x;
}
inline void add(int x, int c)
{
for(int i = x; i <= n; i += lowbit(i))
{
tr[i] += c;
}
}
inline int sum(int x)
{
int res = 0;
for(int i = x; i; i -= lowbit(i))
{
res += tr[i];
}
return res;
}
int main()
{
IOS
cin >> n;
for(int i = 1; i <= n; i ++)cin >> a[i];
for(int i = 1; i <= n; i ++)
{
int x = a[i];
Greater[i] = sum(n) - sum(x);
Lower[i] = sum(x - 1);
add(x, 1);
}
memset(tr, 0, sizeof tr);
ll ans1 = 0, ans2 = 0;
for(int i = n; i >= 1; i --)
{
int x = a[i];
ans1 += (ll)Greater[i] * (sum(n) - sum(x));
ans2 += (ll)Lower[i] * sum(x - 1);
add(x, 1);
}
cout << ans1 << ' ' << ans2;
return 0;
}
第一次正序循环用来找每一个数左边有几个数比它大/小,用数组记录下来。
第二次反序循环用来找每一个数右边有几个数比它大/小。
这里是用前缀和实现的,每遍历到一个数,就在这个数的位置上加一,sum表示前缀和,sum(n) - sum(x)就是左边/右边比它大的数的数量,树状数组用来求前缀和和修改前缀和的时间复杂度都是O(logn),所以采用树状数组。
另外一种类似的思路:
#include<bits/stdc++.h>
#define IOS ios::sync_with_stdio(0);cin.tie(0);cout.tie(0);
#define endl '\n'
using namespace std;
typedef pair<int, int> PII;
typedef long long ll;
const int N = 200010;
int n;
int a[N];
int tr[N];
int Greater[N], lower[N];
int lowbit(int x)
{
return x & -x;
}
void add(int x, int c)
{
for (int i = x; i <= n; i += lowbit(i)) tr[i] += c;
}
int sum(int x)
{
int res = 0;
for (int i = x; i; i -= lowbit(i)) res += tr[i];
return res;
}
int main()
{
scanf("%d", &n);
for (int i = 1; i <= n; i ++ ) scanf("%d", &a[i]);
for (int i = 1; i <= n; i ++ )
{
int y = a[i];
Greater[i] = sum(n) - sum(y);
lower[i] = sum(y - 1);
add(y, 1);
}
ll res1 = 0, res2 = 0;
for (int i = 1; i <= n; i ++ )//只有这里不同
{
int y = a[i];
res1 += Greater[i] * (ll)(sum(n) - sum(y) - Greater[i]);
res2 += lower[i] * (ll)(sum(y - 1) - lower[i]);
}
printf("%lld %lld\n", res1, res2);
return 0;
}
给定一个数组a,建立树状数组的两种方式:
O(nlogn):
for(int i = 1; i <= n; i ++)
{
add(i, a[i]);
}
每一次更新的时间复杂度是logn,更新n次。
O(n):
for(int i = 1; i <= n; i ++)
{
tr[i] = a[i];
for(int j = i - 1; j > lowbit(i); j -= lowbit(j))
{
tr[i] += tr[j];
}
}
树状数组可以看作有2n个点的一个树,有2n-1条边,这个循环只会执行2n-1次,所以是O(n)。

学自:Acwing。
感谢yxc老师