- 博客(105)
- 资源 (9)
- 问答 (1)
- 收藏
- 关注
原创 MQTT协议零基础快速入门
MQTT协议是一种轻量级、开放、简单的发布/订阅消息传输协议,适用于受限环境和大规模的物联网(IoT)和机器对机器(M2M)通信。它提供了三种服务质量保证级别,以满足不同场景的需求。通过在发送方和接收方之间建立有序、无损、双向连接,MQTT实现了可靠的消息传递。在实现过程中,发送方和接收方的行为和职责明确,有利于实现服务解耦和一对多消息分发。同时,MQTT协议的设计也考虑了网络拥塞和丢包等问题,以确保消息的可靠传递。
2023-11-05 18:39:10 609 2
原创 Redis持久化机制的三种方式:RDB、AOF和混合持久化
Redis持久化机制的三种方式:RDB、AOF和混合持久化,各有其优缺点。在选择合适的持久化策略时,需要考虑具体的应用场景和需求。通过理解Redis的持久化机制和底层实现思路,我们可以更好地利用Redis来满足不同的数据存储需求。
2023-10-28 22:53:04 696
原创 Synchronized和CAS加锁的区别
Synchronized和CAS加锁是Java中两种常见的锁机制,它们在实现方式、锁升级以及适用场景方面存在一些区别。
2023-10-24 23:56:34 445
原创 Kafka的分区和副本机制
Kafka的分区和副本机制是分布式消息系统中的重要概念,它们在数据一致性和容错方面起到了关键作用。下面我将详细介绍这两个机制的工作原理和底层实现思路,并通过Java源码示例和分析来加深理解。
2023-10-22 20:33:53 1364
原创 Kafka与Spring Boot等应用框架的集成及消息驱动模型
在本文中,我们深入探讨了Kafka与Spring Boot等应用框架的集成方式以及Kafka支持的消息驱动模型。在集成方面,我们介绍了如何在Spring Boot项目中添加Kafka依赖,并配置了相应的属性以实现应用程序与Kafka集群的通信。然后,我们详细讲解了几种常见的消息驱动模型,包括发布-订阅模型、请求-响应模型和流处理模型。通过使用Kafka Streams API,我们可以轻松实现这些模型并处理大规模的实时数据流。
2023-10-19 22:48:40 1643 1
原创 Kafka如何处理消费者之间的消息偏斜和负载均衡问题
Kafka是一种分布式流处理平台,由LinkedIn开发并开源。它以其高效的数据传输和处理能力,吸引了大量的开发者和用户。本文将从Kafka的消费模型、分区负载均衡和公平分配负载机制三个方面,详细分析Kafka如何处理消费者之间的消息偏斜和负载均衡问题,并使用Java源码示例进行说明。
2023-10-15 12:38:32 1269
原创 Kafka服务端高性能技术细节原理:基于零拷贝的mmap和sendfile
Kafka 的生产者将消息数据写入一个底层的 Socket 输出流中,并调用 sendfile 系统调用来将数据发送给消费者。由于 sendfile 可以直接将文件内容发送到网络输出流中,因此它避免了不必要的内存拷贝和数据复制,提高了数据传输效率。sendfile 是一个系统调用,它可以将文件内容直接发送到网络输出流中,避免了不必要的内存拷贝和数据复制。mmap 是一种内存映射文件的方法,它可以将文件映射到进程的地址空间中,使进程可以访问和操作文件内容,而无需进行显式的拷贝操作。
2023-10-14 10:33:25 2148
原创 Kafka数据同步原理详解
Kafka是一种分布式的消息队列系统,它具有高吞吐量、可扩展性和分布式特性等优势。在Kafka中,数据按照主题进行分区,每个主题都有一组分区。每个分区都有自己的生产者和消费者,生产者负责向分区中写入消息,消费者负责从分区中读取消息。因此,Kafka的数据同步主要涉及到生产者和消费者之间的数据传输以及副本同步。
2023-10-12 23:05:15 3776 2
原创 Mybatis事务如何跟Spring结合到一起?
在Java Web开发中,MyBatis和Spring是两个常用的框架,它们可以有效地结合在一起,提供强大的数据库事务管理功能。在本文中,我们将从数据库事务特性和Spring事务管理源码两个角度来分析MyBatis事务如何与Spring结合到一起的原理。
2023-10-12 22:16:27 2035 3
原创 分布式系统开发技术中的CAP定理原理
在分布式系统开发中,CAP定理(一致性、可用性和分区容忍性)是指导我们设计、开发和维护系统的核心原理。该定理阐述了分布式系统中一致性、可用性和扩展性之间无法同时满足的矛盾关系,为我们提供了在分布式环境下进行系统设计和优化时的理论指导。
2023-10-12 22:04:47 436
原创 Java并发编程之Future原理分析
在Java中,多线程编程是一种常见的编程模式,它允许程序同时执行多个线程,以提高程序的执行效率。然而,如果每个线程都创建和销毁线程,这将带来巨大的开销。为了解决这个问题,Java提供了线程池,它是一个重用的线程集合,可以减少创建和销毁线程的开销。Java并发编程之Future原理是Java线程池中的重要技术。通过使用Future,我们可以查询异步计算的结果,并在计算完成后采取相应的操作。在实现上,Java提供了FutureTask类来支持这一功能,它可以减少我们的工作量并提高代码的可读性。
2023-10-12 21:25:58 480
原创 kafka顺序读写磁盘分析
Kafka的写磁盘技术具有高吞吐量、可扩展性和可靠性等特点,通过采用顺序写磁盘、零拷贝、批量写入和异步刷盘等技术细节实现。Kafka的读磁盘技术通过采用顺序读取、分区读取、缓存技术和数据压缩等技术细节实现高吞吐量和低延迟的性能。
2023-10-11 22:09:32 658
原创 一个命令让redis服务端所有信息无所遁形~(收藏吃灰系列)
Redis作为高性能的内存数据库,其命令不仅提供了对数据的增删查改等基础操作,而且提供了丰富的数据管理功能。而数据类型命令,使得Redis可以存储和管理复杂的数据结构,如列表、集合、哈希表和有序集合等。总的来说,Redis服务端命令是Redis的核心功能之一,它们使得Redis具有了丰富的数据操作和管理功能,能满足各种复杂的应用场景需求。同时,Redis的I/O多路复用技术使得多个事件可以并发出现时,Redis能有效地进行处理,从而保证了其高性能和实时性。这些事件的处理和Redis命令的执行密切相关。
2023-10-10 22:54:46 395
原创 Java多线程:Runnable与Callable的区别和原理
总的来说,Runnable和Callable都是用于实现多线程的工具,但它们的设计目的和使用场景是不同的。Runnable更适合用于执行简单的、不需要返回结果的任务,而Callable更适合用于需要返回计算结果的任务。在编写多线程程序时,我们需要根据实际需求选择适当的接口。在Java多线程编程中,我们经常使用Runnable和Callable接口来创建并执行线程。这两个接口都是Java.lang包中的部分,并且都用于实现多线程。在本文中,我们将深入探讨这两种接口的差异以及它们的工作原理。
2023-10-10 22:48:53 758 1
原创 Java线程通信:原理与简单示例
在Java中,线程之间的通信是一个非常重要的概念。这通常涉及到等待、通知和阻塞等机制。在多线程环境中,线程间的正确通信可以确保程序的流程顺利进行,数据的安全访问和共享。下面我们将深入探讨Java中的线程通信方式及其原理。
2023-10-10 22:36:52 297
原创 Java并发编程之ReentrantLock重入锁原理解析
ReentrantLock是Java并发编程库中的一个重要工具,它提供了一种可重入的互斥访问共享资源的方式。通过内部计数器来实现锁的占用情况的记录,同时支持公平锁和非公平锁两种策略以及可重入特性。使用ReentrantLock可以有效地避免并发访问共享资源时的线程安全问题。
2023-10-09 22:06:08 355
原创 CountDownLatch闭锁原理解析
在Java并发编程中,CountDownLatch是一个常用的工具类,用于实现闭锁(latch)。闭锁是一种常见的同步机制,用于控制线程的执行流程,确保某些线程在执行之前满足特定的条件。CountDownLatch尤其在多线程协作场景中非常重要,例如,当一个线程需要等待其他多个线程完成各自的工作后才能执行下一步操作时,CountDownLatch可以发挥巨大作用。
2023-10-09 21:56:55 319
原创 CyclicBarrier:Java并发编程中的循环屏障原理解析
CyclicBarrier是Java并发编程中的一个强大工具,允许一组线程互相等待,直到所有线程都到达某个屏障点。它适用于多种场景,如并行任务分发、复杂算法中的阶段控制等。通过理解和掌握CyclicBarrier,开发人员能够在多线程环境中实现更高效和更可控的任务执行模型。
2023-10-09 21:49:01 184
原创 Spring技术原理之Bean生命周期原理解析
Spring作为Java领域中的优秀框架,其核心功能之一是依赖注入和生命周期管理。其中,Bean的生命周期管理是Spring框架中一个重要的概念。在本篇文章中,我们将深入探讨Spring技术原理中的Bean生命周期原理,并通过简单的Java代码示例进行解析。
2023-10-09 21:46:33 277
原创 Java并发编程之ConcurrentHashMap原理解析
在Java中,ConcurrentHashMap是一种高效的多线程数据结构,用于在并发环境下实现安全的读写访问。自JDK 1.8开始,ConcurrentHashMap进行了重大改进,摒弃了分段锁(Segmentation Lock)的实现方式,转向使用CAS(Compare-and-Swap)和synchronized结合的方式来实现。同时,内部对于HashEntry也改为了Node,并且引入了红黑树(Red-Black Tree)的实现。下面我们将深入探讨ConcurrentHashMap的内部原理。
2023-10-09 21:40:12 116
原创 Spring事务与MyBatis事务的集成:通过ThreadLocal实现绑定
将Spring事务集成到MyBatis中,可以使我们在使用MyBatis进行数据库操作时,享受到Spring事务管理带来的便利。通过使用ThreadLocal,我们可以在SqlSession执行时获取到事务信息,从而在事务中执行数据库操作。通过配置Spring的事务管理器,以及在业务逻辑层和MyBatis的Mapper接口中使用@Transactional注解,我们可以方便地控制事务的开始、提交和回滚。以上是一个简单的示例,实际使用中还需要考虑到更多的因素。
2023-10-09 21:17:34 1779 4
转载 java family面试
我会从下图中的知识点去写这个系列,很多细节的点,可能想得不是很完善,大家可以去获取或者加我提意见(别忘记哟)。原创文章每周最少两篇,公众号首发文章,首发视频,比博客早一到两篇。
2023-10-09 08:45:10 217
原创 LinkedBlockingQueue:Java并发编程的强大工具
在Java并发编程中,LinkedBlockingQueue是一个非常重要的数据结构,它是一个线程安全的队列,能够有效地管理和控制多线程环境中的任务。本文将介绍LinkedBlockingQueue的工作原理、应用场景以及简单示例,帮助你更好地理解并发编程中的LinkedBlockingQueue。
2023-10-08 22:44:17 407
原创 Java线程池:并发编程的利器
Java线程池是一种预先创建一定数量的线程,并将任务提交给这些线程执行的机制。它能够有效地管理线程的创建、销毁和执行,避免了大量线程的频繁创建和销毁,提高了应用程序的性能和响应速度。线程池可以适用于需要执行大量异步任务的情况,例如服务器处理请求、应用程序的并行计算等。
2023-10-08 22:30:56 571
原创 JVM垃圾回收之JVM GC算法探究
JVM 的垃圾回收机制是 JVM 自动内存管理的重要组成部分,它能够有效地回收不再使用的对象,避免内存泄漏和内存溢出等问题。而垃圾回收机制的核心就是 GC 算法和 GC Roots 定位算法。了解和掌握这些算法的原理和机制有助于我们更好地理解和使用 JVM。
2023-10-08 22:26:57 641 1
原创 JSP:Java Server Pages
在 Java 中,JSP(Java Server Pages)是一种用于创建动态网页的技术。它允许将 Java 代码与 HTML 代码相结合,从而在服务器端生成动态页面,并将其发送到客户端浏览器。在本文中,我们将简要介绍 JSP 的基本概念、工作原理和常用语法,并附上一些简单的代码示例。
2023-10-08 22:18:32 341
原创 Java数据库连接:JDBC介绍与简单示例
JDBC是一种标准的Java API,它提供了一组接口,通过这些接口Java程序可以与数据库进行通信。JDBC驱动程序将Java应用程序与特定类型的数据库连接起来,允许Java应用程序执行SQL语句,读取和更新数据库中的数据。
2023-10-08 22:15:15 511
原创 Java IO 流:简介与代码示例
Java IO 流可以根据输入/输出设备的类型和特性,将数据的输入和输出操作简化。它提供了一种抽象的方式,让我们可以使用统一的方式处理不同的输入输出情况。Java 的 IO 流提供了处理各种数据输入和输出的强大工具。无论是处理文件,还是处理网络通信,Java IO 流都能提供简单且高效的方式。在理解和使用这些工具时,要记住及时关闭打开的资源,以防止资源泄露。
2023-10-08 22:10:25 118
原创 Java异常:基本概念、分类和处理
Java异常是程序在运行过程中出现的问题或意外情况,导致程序无法正常执行。例如,试图访问不存在的文件、除数为零等都会引起异常。异常可以是Java类库中预定义的异常,也可以是程序员自己定义的异常。
2023-10-08 22:05:02 572
原创 Kafka为什么这么快?它的高性能是如何实现的?
Kafka之所以能够实现高性能,是因为它采用了顺序写入、分区和副本、批量写入和压缩、消费者组以及高效的网络通信等一系列优化措施。这些措施充分利用了磁盘、CPU、内存和网络等计算资源,提高了系统的整体性能。因此,Kafka已经成为了一种非常受欢迎的高性能数据管道和消息系统。
2023-10-05 17:46:57 266
原创 我的创作纪念日
在学习方面,我会通过阅读书籍和网上的教程来学习新的知识点,然后通过写作来总结和分享自己的学习心得和经验。我会定期阅读相关的技术书籍和网上的教程,参加相关的技术培训和会议,不断保持对新技术和新趋势的敏感度和掌握程度。其次,我也收到了很多读者的反馈,有些读者会分享他们的经验和看法,让我受益匪浅。我觉得写作可以帮助我更好地理解和掌握工作中的技术知识,同时也可以分享给同事和业界的朋友,提高个人影响力。在学习方面,我会通过写作来总结和分享自己的学习心得和经验,这样可以更好地巩固和加深自己的理解。
2023-10-05 12:50:24 170
原创 Kafka与RocketMQ区别是什么
本文详细对比分析了Kafka和RocketMQ在适用场景、架构设计、性能、可靠性、实时性、延迟消息和适用项目等方面的差异。总体来说,Kafka和RocketMQ都是优秀的消息队列系统,适用于不同的业务场景。在选择时需要根据实际需求进行评估和选择。如果需要处理大规模日志数据或实时数据流,可以选择Kafka;如果需要处理分布式事务或消息推送等场景,可以选择RocketMQ。
2023-10-01 18:32:44 2167 1
原创 Disruptor:无锁队列设计的背后原理
在高并发场景下,队列的速度和效率是关键。而Disruptor,一种高性能的并发队列,通过独特的设计,解决了传统队列在处理高并发时可能遇到的性能瓶颈。本文将深入分析Disruptor如何通过环形数组结构、元素位置定位以及无锁设计,实现高效的并发控制。Disruptor通过环形数组结构、元素位置定位、无锁设计和伪共享处理等设计,实现了高性能的无锁队列。这些设计思路对于我们设计和优化高并发系统具有重要的参考价值。
2023-09-25 23:28:49 376
原创 Kafka实现保证一批消息顺序生产消费的方案
但是,这样做可能会导致同一个业务上的消息被路由到不同的partition,从而无法保证这批消息的顺序。为了解决这个问题,我们可以将这批消息的所有key都设置为相同的值,这样这批消息就会被路由到同一个partition,从而保证顺序。在Kafka中,消息是以topic为单位进行归类的,而每个topic又可以分为多个partition,以实现数据的高效存储和并发处理。在这个例子中,我们将所有消息的key都设置为"my_key",这样这批消息就会被路由到同一个partition,从而保证顺序。
2023-09-21 22:14:21 666
原创 优化MySQL索引创建,减轻线上服务影响
在处理大型数据库中的索引创建问题时,我们的目标是尽可能减少对线上服务的影响通过合理地运用上述提到的方法,你可以在保证索引创建效率的同时,降低对线上服务的影响这需要你对你的数据库、应用和索引需求有深入的了解,以便做出最适合的决策希望这篇博客能帮助你解决在实际操作中遇到的问题如果你有其他问题或需要进一步的帮助,欢迎随时向我询问。如何在添加索引的同时,降低对线上服务的影响,是亟待解决的问题。(2)优化查询语句:针对具体的业务需求,编写高效的查询语句,减少对数据库的访问次数和锁定的时间。
2023-09-18 22:50:29 364
原创 Kafka实现高性能消息队列分析
Apache Kafka是一款开源的、分布式的、高吞吐量的流平台。它被广泛用于实时数据流的处理,包括实时流分析、实时日志处理、实时事件处理等。Kafka的主要设计目标是高吞吐量、可扩展性、容错性和持久性。在本篇文章中,我们将深入探讨Kafka如何实现高性能消息队列,包括服务端和客户端的架构,以及关键的设计和优化技术,如服务端的顺序写磁盘、零拷贝,客户端的批量发送等。
2023-09-16 20:24:43 617
原创 Kafka消息发送可靠性分析
Apache Kafka是一种高吞吐量的分布式发布订阅消息系统,它可以处理消费者和生产者之间的所有实时数据。Kafka的主要特性包括:高吞吐量、可扩展性、持久性、分布式、可容错等。这些特性使得Kafka成为大规模数据处理和实时数据分析的理想选择。然而,关于Kafka的一个常见问题是其消息发送的可靠性。下面我们将详细分析Kafka的消息发送机制,并通过代码示例展示其可靠性。
2023-09-14 22:10:25 497
原创 Kafka消费一致性和幂等性分析
在分布式系统中,消息队列被广泛用于数据的传输和处理。其中,Kafka因其高吞吐量、可扩展性和容错性而备受关注。然而,在处理海量数据时,确保消息的一致性和幂等性十分重要。本文将通过代码示例,对Kafka消费一致性和幂等性进行分析。该示例代码演示了如何使用Kafka Consumer API从Kafka中获取消息,并通过检查消息是否已经被处理过来实现消息的一致性和幂等性。如果消息已经被处理过,则跳过该消息的处理;否则,进行消息的处理,并将消息标记为已处理。在处理消息时,可以根据实际业务逻辑进行相应的处理操作。
2023-09-05 21:44:18 577
原创 Kafka消费可靠性分析及其代码实现
本文分析了Kafka消费可靠性的关键因素,并通过代码示例实现了基本的可靠性机制。然而,实际的Kafka消费场景可能更加复杂,需要更多的策略和技术来保证可靠性。例如,可以使用分布式追踪系统来监控和处理异常情况,使用流处理框架对消息进行实时处理等。未来,我们可以进一步探索这些技术和策略,以提高Kafka消费的可靠性。
2023-09-04 22:06:11 227
原创 (五)kafka从入门到精通之topic介绍
Kafka是一个流行的分布式消息系统,它的核心是一个由多个节点组成的分布式集群。在Kafka中,数据被分割成多个小块,并通过一些复杂的算法在节点之间传递。这些小块被称为Kafka Topic。
2023-07-02 20:09:28 8180
MQTT Version 3.1.1中英文翻译对照文档.pdf
2023-11-04
Apache Flume
2022-07-02
redis window最新免安装版本
2022-06-20
微信小程序实战,用vue3实现每日浪漫情话推荐~
2022-06-18
zookeeper3.8 linux安装包
2022-03-19
恋爱话术微信小程序源码
2022-02-23
java实现QQ机器人源码
2022-02-23
前端动态路由应该怎么实现?
2021-06-22
TA创建的收藏夹 TA关注的收藏夹
TA关注的人