一元线性同余方程简介

一元线性同余方程

定义

在数论中,线性同余方程是最基本的同余方程,“线性”表示方程的未知数次数是一次,即形如:

axb(mod n) 的方程。

解法(并不会证明)

对于线性同余方程 axb(mod m) ,设 d=(a,m) db 则方程无解,否则方程恰有 d 个模m不同的解。
当有解时,设 a=da0 m=dm0
方程两边同时除以 d 并去模,得

a0x+m0y=b/d

而此时因为 (a0,m0) =1,因此我们可以考虑使用扩展欧几里得算法进行求解。
设解为 x0 ,则因为其他解关于 m0 同余 (a0xb/d (mod m0)) ,所以所有的解为

x0,x0+m0,x0+2m0......

代码:

int r=exgcd(a,m,x,y);//扩欧
if (b%r)
    return -1;
x=x*(b/r)%m;
for (int i=1;i<=r;i++)
    ans[i]=(x+(i-1)*m/r)%m;

一元线性同余方程组

任何一元同余方程都可变成若干个形如 xb(mod m) 的方程

axb(mod m) —> xba1(mod m)

而一元线性同余方程组可以两两进行合并,成为一个一元线性同余方程进行求解。

解法

对于两个方程

xb1(mod m1)
xb2(mod m2)

(m1,m2)(b1b2) 时有解
此时两个方程分别可以看成:

x+m1y1=b1
x+m2y2=b2

因为 x 相同,所以我们可以把两式相减,得

m1y1m2y2=b1b2

因为 (m1,m2)(b1b2) ,因此我们仍然可以用扩展欧几里得算法进行求解。
解得 y1 y2 后,我们就可以进行合并

b(x)=m1y1+b1
m=m1m2/(m1,m2)

于是我们就得到了新的方程。然后不断合并接下来的方程即可。
最终解即为 xb(mod m) ,即 x=b

代码:

for (LL i=1;i<n;i++){
    LL aa,mm,x,y;
    scanf("%lld%lld",&aa,&mm);
    LL r=exgcd(a,x,aa,y);//扩欧,a和m之前先读下来
    if ((mm-m)%r!=0) f=true;
    LL t=aa/r;
    x=(x*((mm-m)/r)%t+t)%t;
    m+=a*x;
    a*=(aa/r);
}
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值