洛谷P1962 斐波那契数列

矩阵乘法

题目传送门

求斐波那契数列第n项谁都会,但是这里n有long long , O(n) 推显然是不行的。于是我们就需要考虑使用矩阵快速幂优化。

构造一个矩阵 [ f[n1]f[n] ]
再构造一个变换矩阵,使得 [ f[n2]f[n1] ]×x=[ f[n1]f[n] ]

很显然x是2*2的矩阵。不妨设 x=[acbd]

那么有如下等式:

[ f[n2]f[n1] ]×[acbd]=[ f[n1]f[n] ]

根据矩阵乘法,可以得到各项系数:
x=[0111]

根据矩乘的结合率,我们可以得到:

[ f[1]f[2] ]×[0111]n2=[ f[n1]f[n] ]

于是我们就可以用快速幂在 O(log2n) 的时间得到第n项了。

代码:

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
typedef long long LL;
const LL MOD=1e9+7;
struct Matrix{
    int n,m;
    LL a[3][3];
}a,b;
LL n;
Matrix operator * (const Matrix &x,const Matrix &b){
    Matrix c;
    c.n=x.n,c.m=b.m;
    for (int i=1;i<=c.n;i++)
        for (int j=1;j<=c.m;j++){
            c.a[i][j]=0;
            for (int k=1;k<=x.m;k++)
                (c.a[i][j]+=x.a[i][k]*b.a[k][j])%=MOD;
        }
    return c;
} 
Matrix ksm(Matrix a,LL b){
    Matrix ret;
    ret.m=ret.n=2;
    for (int i=1;i<=ret.n;i++)
        for (int j=1;j<=ret.m;j++)
            ret.a[i][j]=1;
    while (b){
        if (b&1) ret=ret*a;
        b>>=1; a=a*a;
    }
    return ret;
}
int main(){
    scanf("%lld",&n);
    if (n==1) return printf("1\n"),0; 
    b.a[1][1]=0; b.a[1][2]=1;
    b.a[2][1]=1; b.a[2][2]=1;
    b.n=b.m=2;
    a.a[1][1]=0; a.a[1][2]=1;
    a.n=1,a.m=2;
    printf("%lld\n",(a*ksm(b,n-2)).a[1][2]);
    return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值