洛谷_P2626 斐波那契数列(升级版)

52 篇文章 1 订阅
27 篇文章 0 订阅
题目背景
大家都知道,斐波那契数列是满足如下性质的一个数列:

f(1) = 1 f(1)=1
f(2) = 1f(2)=1
f(n) = f(n-1) + f(n-2)f(n)=f(n−1)+f(n−2) (n ≥ 2n≥2 且 nn 为整数)。
题目描述
请你求出第n个斐波那契数列的数mod(或%)2^31 之后的值。并把它分解质因数。

输入输出格式
输入格式:
n

输出格式:
把第nn个斐波那契数列的数分解质因数。

输入输出样例
输入样例#1: 
5
输出样例#1: 
5=5
输入样例#2: 
6
输出样例#2: 
8=2*2*2
说明
n<=48

这道题是1997NOIP普及组的第*题,比较简单,蒟蒻的作者10分钟就想出来了。

思路:

递归求出斐波那契数列,放进数组,方便等会儿用,然后再分解质因数+输出就行了。

简单地说,就是分解质因数代码加上斐波那契数列的代码。

源代码

#include<bits/stdc++.h> 
using namespace std; 
long long n,dp[49],x=1;
long long p=pow(2,31);//按照题意,等会儿%这个数 
int main(){
    cin>>n;
    dp[1]=1;
    dp[2]=1;//斐波那契数列初始化 
    for(int i=3;i<=n;i++){
    	dp[i]=(dp[i-1]+dp[i-2])%p;//构造斐波那契数列 
	}
	cout<<dp[n]<<"=";//输出 
    for(int i=2;i<=dp[n];i++){
        for(int j=0;dp[n]%i==0;j++){
            if(x){
				x=0;
				cout<<i;
			}
            else {
            	cout<<'*'<<i;
			}
            dp[n]/=i;//分解质因数+输出 
        }
    }
    cout<<endl;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值