EXCRT
原来我以前解线性同余方程组的那东西叫扩展中国剩余定理。。。(和CRT一点关系都没有啊)
看透题目后这就是个板子题。
求 atki∗x≡ai(modpi) a t k i ∗ x ≡ a i ( mod p i ) 这个方程组的最小解。变量名同题目。其中 atki a t k i 可以通过multiset维护。
因为 pi p i 不一定是质数,要把 atki,ai,pi a t k i , a i , p i 同除以 r=(atki,pi) r = ( a t k i , p i ) 后 atki a t k i 才会有逆元。当然如果 ai a i 不整除 r r 无解。除完后把用逆元移到右边做一遍EXCRT就好了。
还有当 ai>pi a i > p i 的时候不能求解(生命值会变啊)。注意到此时保证 pi=1 p i = 1 ,那么答案即为 max{⌈aiatki⌉} m a x { ⌈ a i a t k i ⌉ }
中间过程会爆 long long l o n g l o n g ,要使用快速乘。
代码:
#include<set>
#include<cmath>
#include<cctype>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define N 100005
#define F inline
using namespace std;
typedef long long LL;
int T,n,m;
LL a[N],b[N],p[N],atk[N];
multiset <LL> s;
multiset <LL> ::iterator it;
F char readc(){
static char buf[100000],*l=buf,*r=buf;
if (l==r) r=(l=buf)+fread(buf,1,100000,stdin);
return l==r?EOF:*l++;
}
F LL _read(){
LL x=0; char ch=readc();
while (!isdigit(ch)) ch=readc();
while (isdigit(ch)) x=(x<<3)+(x<<1)+(ch^48),ch=readc();
return x;
}
F LL mul(LL a,LL b,LL c){
LL ans=0; a%=c,b%=c;
while (b){
if (b&1) (ans+=a)%=c;
(a<<=1)%=c; b>>=1;
}
return ans;
}
LL gcd(LL a,LL b){ return b==0?a:gcd(b,a%b); }
LL exgcd(LL a,LL &x,LL b,LL &y){
if (!b) return x=1,y=0,a;
LL r=exgcd(b,y,a%b,x);
return y-=a/b*x,r;
}
F void doit(){
LL ans=0;
for (int i=1;i<=n;i++)
ans=max(ans,(LL)ceil(1.0*a[i]/atk[i]));
printf("%lld\n",ans);
}
int main(){
for (T=_read();T;T--){
n=_read(),m=_read(),s.clear(); int f=0;
for (int i=1;i<=n;i++) a[i]=_read();
for (int i=1;i<=n;i++) p[i]=_read(),f+=p[i]==1;
for (int i=1;i<=n;i++) b[i]=_read();
for (int i=1;i<=m;i++) s.insert(_read());
for (int i=1;i<=n;i++){
it=s.upper_bound(a[i]); if (it!=s.begin()) it--;
atk[i]=*it,s.erase(it),s.insert(b[i]);
}
if (f==n){doit(); continue;}
for (int i=1;i<=n;i++){
LL r=gcd(atk[i],p[i]),x,y;
if (a[i]%r){ f=-1; break; }
atk[i]/=r,a[i]/=r,p[i]/=r;
exgcd(atk[i],x,p[i],y);
a[i]=mul(a[i],x%p[i]+p[i],p[i]);
}
LL m=p[1],ans=a[1];
for (int i=2;i<=n;i++){
LL x,y,r=exgcd(m,x,p[i],y),c=a[i]-ans;
if (c%r){ f=-1; break; } LL t=p[i]/r;
x=mul(x%t+t,c/r%t+t,t),m*=t;
ans=(ans+mul(m/t,x,m))%m;
}
f==-1?puts("-1"):printf("%lld\n",ans);
}
return 0;
}