二叉查找树(BST)

一、二叉查找树的定义

二叉查找树(Binary Search Tree, BST)是一种特殊的二叉树,又称为排序二叉树、二叉搜索树,二叉排序树。二叉查找树的递归定义如下:
1、要么二叉查找树是一颗空树。
2、要么二叉查找树由根结点、左子树、右子树组成,其中左子树和右子树都是二叉查找树,且左子树上所有结点的数据域均小于或等于根结点的数据域,右子树上所有的结点的数据域均大于根结点的数据域。

二、二叉查找树的基本操作

1、查找操作:
查找操作的基本思路如下:
①如果当前根结点root为空,说明查找失败,返回。
②如果需要查找的值x等于当前根结点的数据域root->data,说明查找成功,访问之。
③如果需要查找的值x小于当前根结点的数据域root->data,说明应该往左子树查找,因此向root-> lchild递归。
④如果需要查找的值x大于当前根结点的数据域root->data,说明应该往右子树查找,因此向roto->rchiild递归。
代码如下:
/********search函数查找二叉查找树中数据域为x的结点********/ 
void search(node* root, int x){
	if(root == NULL){              //空树,查找失败 
		printf("search failed");
		return;
	}
	if(x == root->data){            //查找成功,访问之 
		printf("%d\n", root->data);
	}
	else if(x < root->data){      //如果x比根结点的数据域小,说明x在左子树 
		search(root->lchild, x);  //往左子树搜索x 
	} 
	else{                        //如果x比根结点的数据域大,说明x在右子树 
		search(root->rchild, x);  //往右子树搜索x 
	}
} 

2、插入操作:
对于一颗二叉查找树来说,查找某个数据域的结点一定是沿着确定的路径进行的。因此,当对某个需要查找的值在二叉查找树中查找成功,说明结点已经存在;反之,如果这个需要查找的值在二叉查找树中查找失败,那么说明查找失败的地方一定是结点需要插入的地方。
代码如下:
/*****insert函数将在二叉树中插入一个数据域为x的新结点(注意参数root要加引用&)*****/
void insert(node* &root, int x){
	if(root == NULL){      //空树,说明查找失败,也即插入位置 
		root = newNode(x);
		return; 
	}
	if(x == root->data){   //查找成功,说明结点已存在,直接返回 
		return;
	}
	else if(x < root->data){   //如果x比根结点的数据域小,说明x需要插在左子树 
		insert(root->lchild, x);  //往左子树搜索x 
	}
	else{                        //如果x比根结点的数据域大,说明x需要插在右子树 
		insert(root->rchild, x);   //往右子树搜索x 
	}
}

3、二叉查找树的建立:
/******二叉查找树的建立******/
node* create(int data[], int n){
	node* root = NULL:      //新建根结点 
	for(int i = 0; i < n; i++){   
		insert(root, data[i]);	 //将data[0]~data[n-1]插入二叉查找树中 
 	}
 	return root;      //返回根结点 
}

4、二叉查找树的删除:
删除操作的基本思路:
①如果当前结点root为空,说明不存在权值为给定权值x的结点,直接返回。
②如果当前结点root的权值恰为给定的权值,说明找到了想要删除的结点,此时进入删除处理。
a) 如果当前结点root不存在左右孩子,说明是叶子结点,直接删除。
b) 如果当前结点root存在左孩子,那么在左子树中寻找结点前驱pre,然后让pre的数据覆盖root,接着在左子树中删除结点pre。
c) 如果当前结点root存在右孩子,那么在右子树中寻找结点后继next,然后让next的数据覆盖root,接着在右子树中删除结点next。
③如果当前结点root的权值小于给定的权值x,则在左子树中递归删除权值为x的结点。
④如果当前结点root的权值大于给定的权值x,则在右子树中递归删除权值为x的结点。
/*********寻找以root为根结点的树中的最大权值结点**********/ 
node* findMax(node* root){
	while(root->rchild != NULL){
		root = root->rchild;        //不断往右,直到没有右孩子 
	}
	return root; 
} 

/***********寻找以root为根结点的树中的最小权值结点************/
node* findMin(node* root){
	while(root->lchild != NULL){
		root = root->lchild;   //不断往左,直到没有左孩子 
	}
	return root; 
} 

/*********删除以root为根结点的树中权值为x的结点**********/
void deleteNode(node* &root, int x){
	if(root == NULL){             //不存在权值为x的结点 
		return;
	}
	if(root->data == x){         //找到欲删除结点 
		if(root->lchild == NULL && root->rchild == NULL){   //叶子结点直接删除 
			root = NULL;                       //把root地址设为NULL,父结点就引用不到它了 
		}
		else if(root->lchild != NULL){        //左子树不为空时 
			node* pre = findMax(root->lchild);       //找root前驱 
			root->data = pre->data;                 //用前驱覆盖root 
			deleteNode(root->lchild, pre->data);     //在左子树中删除结点pre 
		}
		else{                                         //右子树不为空时 
			node* next = findMin(root->rchild);       //找root后继 
			root->data = next->data;                  //用后继覆盖root 
			deleteNode(root->rchild, next->data);     //在右子树中删除结点next 
		}
	} 
	else if(root->data > x){
		deleteNode(root->lchild, x);                 //在左子树中删除x 
	}
	else{
		deleteNode(root->rchild, x);                //在右子树中删除x 
	}
} 


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值