一、二叉查找树的定义
二叉查找树(Binary Search Tree, BST)是一种特殊的二叉树,又称为排序二叉树、二叉搜索树,二叉排序树。二叉查找树的递归定义如下:
1、要么二叉查找树是一颗空树。
2、要么二叉查找树由根结点、左子树、右子树组成,其中左子树和右子树都是二叉查找树,且左子树上所有结点的数据域均小于或等于根结点的数据域,右子树上所有的结点的数据域均大于根结点的数据域。
二、二叉查找树的基本操作
1、查找操作:
查找操作的基本思路如下:
①如果当前根结点root为空,说明查找失败,返回。
②如果需要查找的值x等于当前根结点的数据域root->data,说明查找成功,访问之。
③如果需要查找的值x小于当前根结点的数据域root->data,说明应该往左子树查找,因此向root-> lchild递归。
④如果需要查找的值x大于当前根结点的数据域root->data,说明应该往右子树查找,因此向roto->rchiild递归。
代码如下:
/********search函数查找二叉查找树中数据域为x的结点********/
void search(node* root, int x){
if(root == NULL){ //空树,查找失败
printf("search failed");
return;
}
if(x == root->data){ //查找成功,访问之
printf("%d\n", root->data);
}
else if(x < root->data){ //如果x比根结点的数据域小,说明x在左子树
search(root->lchild, x); //往左子树搜索x
}
else{ //如果x比根结点的数据域大,说明x在右子树
search(root->rchild, x); //往右子树搜索x
}
}
2、插入操作:
对于一颗二叉查找树来说,查找某个数据域的结点一定是沿着确定的路径进行的。因此,当对某个需要查找的值在二叉查找树中查找成功,说明结点已经存在;反之,如果这个需要查找的值在二叉查找树中查找失败,那么说明查找失败的地方一定是结点需要插入的地方。
代码如下:
/*****insert函数将在二叉树中插入一个数据域为x的新结点(注意参数root要加引用&)*****/
void insert(node* &root, int x){
if(root == NULL){ //空树,说明查找失败,也即插入位置
root = newNode(x);
return;
}
if(x == root->data){ //查找成功,说明结点已存在,直接返回
return;
}
else if(x < root->data){ //如果x比根结点的数据域小,说明x需要插在左子树
insert(root->lchild, x); //往左子树搜索x
}
else{ //如果x比根结点的数据域大,说明x需要插在右子树
insert(root->rchild, x); //往右子树搜索x
}
}
3、二叉查找树的建立:
/******二叉查找树的建立******/
node* create(int data[], int n){
node* root = NULL: //新建根结点
for(int i = 0; i < n; i++){
insert(root, data[i]); //将data[0]~data[n-1]插入二叉查找树中
}
return root; //返回根结点
}
4、二叉查找树的删除:
删除操作的基本思路:
①如果当前结点root为空,说明不存在权值为给定权值x的结点,直接返回。
②如果当前结点root的权值恰为给定的权值,说明找到了想要删除的结点,此时进入删除处理。
a) 如果当前结点root不存在左右孩子,说明是叶子结点,直接删除。
b) 如果当前结点root存在左孩子,那么在左子树中寻找结点前驱pre,然后让pre的数据覆盖root,接着在左子树中删除结点pre。
c) 如果当前结点root存在右孩子,那么在右子树中寻找结点后继next,然后让next的数据覆盖root,接着在右子树中删除结点next。
③如果当前结点root的权值小于给定的权值x,则在左子树中递归删除权值为x的结点。
④如果当前结点root的权值大于给定的权值x,则在右子树中递归删除权值为x的结点。
/*********寻找以root为根结点的树中的最大权值结点**********/
node* findMax(node* root){
while(root->rchild != NULL){
root = root->rchild; //不断往右,直到没有右孩子
}
return root;
}
/***********寻找以root为根结点的树中的最小权值结点************/
node* findMin(node* root){
while(root->lchild != NULL){
root = root->lchild; //不断往左,直到没有左孩子
}
return root;
}
/*********删除以root为根结点的树中权值为x的结点**********/
void deleteNode(node* &root, int x){
if(root == NULL){ //不存在权值为x的结点
return;
}
if(root->data == x){ //找到欲删除结点
if(root->lchild == NULL && root->rchild == NULL){ //叶子结点直接删除
root = NULL; //把root地址设为NULL,父结点就引用不到它了
}
else if(root->lchild != NULL){ //左子树不为空时
node* pre = findMax(root->lchild); //找root前驱
root->data = pre->data; //用前驱覆盖root
deleteNode(root->lchild, pre->data); //在左子树中删除结点pre
}
else{ //右子树不为空时
node* next = findMin(root->rchild); //找root后继
root->data = next->data; //用后继覆盖root
deleteNode(root->rchild, next->data); //在右子树中删除结点next
}
}
else if(root->data > x){
deleteNode(root->lchild, x); //在左子树中删除x
}
else{
deleteNode(root->rchild, x); //在右子树中删除x
}
}