多目标优化的ZDT基准问题详细介绍(最全概括)

ZDT

简介

ZDT问题集根据下面过程构建:
在这里插入图片描述
其中都是两个目标的优化问题,共有6个具体实例

1.ZDT1

ZDT1有30个决策变量,其定义如下:
在这里插入图片描述
最优情况下,决策变量的值为:
在这里插入图片描述
其Pareto Front是个凸集:
在这里插入图片描述

2.ZDT2

ZDT2也有30个决策变量,其定义如下:
在这里插入图片描述

最优情况下,决策变量的值为:
在这里插入图片描述

其Pareto Front是个非凸集:
在这里插入图片描述

3.ZDT3

ZDT3也有30个决策变量,其定义如下:
在这里插入图片描述
最优情况下,决策变量的值为:
在这里插入图片描述

其Pareto Front是个非连接集:
在这里插入图片描述

4.ZDT4

ZDT4有10个决策变量,其定义如下:
在这里插入图片描述

最优情况下,决策变量的值为:
在这里插入图片描述

其Pareto Front是个凸集:
在这里插入图片描述

5.ZDT5

ZDT5中变量用2进制编码,共11个决策变量,其中x1用30位编码,其余都用5位编码,值得注意的是,目标函数g(x)具有欺骗性,因为目标函数最小值是由x2-x11全部为5构成,但搜索过程中越靠近5,目标函数越大。其定义如下:
在这里插入图片描述

最优情况下,决策变量的值为:
在这里插入图片描述

其Pareto Front是个凸集:
在这里插入图片描述

6.ZDT6

ZDT6有10个决策变量,其定义如下:
在这里插入图片描述

最优情况下,决策变量的值为:
在这里插入图片描述

其Pareto Front是个密度分布不均匀的非凸集:

在这里插入图片描述

返回受约束的多目标优化问题优秀论文及总结目录

MATLAB是一种强大的数值计算工具,其中包括许多用于优化问题的函数,如求解多目标优化问题ZDT5是一个经典的多目标测试函数,它由Ehrlich等人在2000年提出,作为多目标遗传算法(MOGAs)基准。这个函数有五个决策变量和两个目标函数,通常用于评估算法在处理非线性和约束条件下的性能。 在MATLAB中,你可以使用`fgoalattain`函数来求解ZDT5,虽然这不是针对特定函数设计的,但可以通过一些转换将ZDT5的问题转化为单目标优化问题的形式。以下是简单的步骤: 1. 首先,你需要定义ZDT5的目标函数和约束条件。ZDT5的标准形式可以在网上找到,包括各个维度的计算公式。 2. 然后,创建一个包含决策变量的向量,并设置初始解决方案。 3. 使用`fgoalattain`函数,其中第一个输入是你定义的目标函数,第二个输入是你的决策变量向量,第三个输入是要达到的目标点,第四个输入是惩罚因子(如果需要的话),第五个输入是可以忽略的约束。 ```matlab % ZDT5函数参数 num_obj = 2; % 目标函数数目 num_var = 5; % 决策变量数目 % 初始化决策变量 x = rand(num_var, 1); % 创建一个随机解 % 定义ZDT5的目标函数和约束(这里只是一个示例,实际函数需要你自己编写) zdt5_obj_func = @(x) zdt5(x, num_obj); % 调用fgoalattain [~, sol] = fgoalattain(zdt5_obj_func, x, [1 1], [], 'Nonlcon', @my_constraint); function is_constrained = my_constraint(x) % 编写满足约束条件的函数 end ``` 记得替换`my_constraint`为你自定义的满足ZDT5约束条件的函数。
评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小怪兽会微笑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值