多目标优化的DTLZ基准问题详细介绍(最全概括)

DTLZ

简介

该问题的目标函数个数M是自定义的。

1.DTLZ1

DTLZ1问题的特点是存在( 1 1 k − 1 11^k-1 11k1)个局部最优,所以MOGA不容易找到最优Pareto集。

它的定义是:
在这里插入图片描述

最后 k = ( n − M + 1 ) k=(n−M+1) k=(nM+1)个变量表示为 x M x_M xM。函数式 g ( x M ) g(x_M) g(xM)要求用 ∣ x M ∣ = k |x_M|=k xM=k个变量,即有 k = ( n − M + 1 ) k=(n−M+1) k=(nM+1)个x变量,并且必须接受带有 g ≥ 0 g≥0 g0的任何函数。

g ( x M ) g(x_M) g(xM)定义如下:
在这里插入图片描述
最优情况下:
对于所有的 x i ∈ x M , x i = 0.5 x_i∈x_M,x_i=0.5 xixMxi=0.5 ,而此时M个目标值之和满足等于0.5,这个特点也可用于性能度量

Pareto front:
在这里插入图片描述

2.DTLZ2

由于自定义M,该问题也可以被用于测试算法对大量目标函数的问题的性能。在这我们还可以将每个变量 x i x_i xi变成下式p个变量的均值,用于增加难度:
在这里插入图片描述
具体定义为:
在这里插入图片描述

最优情况下:
对于所有的 x i ∈ x M , x i = 0.5 x_i∈x_M,x_i=0.5 xixMxi=0.5 ,而此时M个目标值的平方和满足等于1,这个特点也可用于性能度量

Pareto front:
在这里插入图片描述

3.DTLZ3

为了增加搜索全局最优的难度,建议在g函数等于Rastrigin的情况下使用上面的问题,即当g满足Rastrigin的最优化时,该问题才能找到全局最优。Rastrigin具体定义如下:
在这里插入图片描述
DTLZ3问题定义如下:
在这里插入图片描述
最优情况下:
对于所有的 x i ∈ x M , x i = 0.5 x_i∈x_M,x_i=0.5 xixMxi=0.5

Pareto front:
在这里插入图片描述

4.DTLZ4

该问题由DTLZ2修改而来,侧重于测试MOEA算法的解的分布性

在这里插入图片描述
原文建议 α = 100 \alpha=100 α=100

最优情况下:
对于所有的 x i ∈ x M , x i = 0.5 x_i∈x_M,x_i=0.5 xixMxi=0.5

Pareto front:

在这里插入图片描述

5.DTLZ5

这个问题将测试MOEA收敛到曲线的能力,还将允许一种更简单的方法(通过绘制FMFM和任何其他目标函数)来直观地演示MOEA的性能。由于这条Pareto-最优曲线附近的解有一个自然偏差,这个问题对于一个算法来说可能很容易解决。

定义如下:
在这里插入图片描述
最优情况下:
对于所有的 x i ∈ x M , x i = 0.5 x_i∈x_M,x_i=0.5 xixMxi=0.5 ,而此时M个目标值的平方和满足等于1,这个特点也可用于性能度量

Pareto front:

在这里插入图片描述

6.DTLZ6

该问题基于DTLZ5进行修改

我们把g函数修改成下式,其他不变:

在这里插入图片描述
选择 x M x_M xM矢量的大小为10,变量总数与DTLZ5相同。由于问题的上述变化,算法很难像DTLZ5那样收敛到真正的pareto最优前沿。

最优情况下:
对于所有的 x i ∈ x M , x i = 0.5 x_i∈x_M,x_i=0.5 xixMxi=0.5

Pareto front:
在这里插入图片描述

7.DTLZ7

该问题有 2 M − 1 2^{M-1} 2M1个不连通的最优Pareto 区域,用于测试算法在不同的Pareto区域里维持子种群的能力
定义如下:
在这里插入图片描述

最优情况下:
对于所有的 x i ∈ x M , x i = 0 x_i∈x_M,x_i=0 xixMxi=0

Pareto front:
在这里插入图片描述

返回受约束的多目标优化问题优秀论文及总结目录

  • 17
    点赞
  • 161
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 7
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小怪兽会微笑

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值