一、引言
随着全球能源结构向可再生能源转型,风电、光伏等新能源在电力系统中的占比不断提高。然而,新能源发电具有显著的间歇性和波动性特征,给电网调度和电力市场运营带来了巨大挑战。准确的新能源功率预测对于提高电网运行安全性、降低备用容量需求和优化电力市场交易具有重要意义。
传统的新能源功率预测方法主要基于物理模型(如数值天气预报NWP的物理转换)和统计学习方法(如ARIMA、SVM等)。近年来,深度学习模型(如LSTM、CNN等)在时序预测任务中展现出优越性能。而随着大模型(Large Language Models, LLMs)技术的快速发展,其在时序预测领域的应用潜力也逐渐显现。
本文将探讨如何利用大模型进行新能源功率预测,包括方法讲解、代码实现和实际案例演示。
二、大模型在新能源功率预测中的优势
大模型在新能源功率预测中具有以下独特优势:
-
强大的特征提取能力:大模型通过预训练已学习到丰富的时空特征表示,能够自动提取气象因素、历史功率等复杂特征
-
多模态数据处理&#x