基于疾风大模型的新能源功率预测:方法、代码与案例解析

一、引言

随着全球能源结构向可再生能源转型,风电、光伏等新能源在电力系统中的占比不断提高。然而,新能源发电具有显著的间歇性和波动性特征,给电网调度和电力市场运营带来了巨大挑战。准确的新能源功率预测对于提高电网运行安全性、降低备用容量需求和优化电力市场交易具有重要意义。

传统的新能源功率预测方法主要基于物理模型(如数值天气预报NWP的物理转换)和统计学习方法(如ARIMA、SVM等)。近年来,深度学习模型(如LSTM、CNN等)在时序预测任务中展现出优越性能。而随着大模型(Large Language Models, LLMs)技术的快速发展,其在时序预测领域的应用潜力也逐渐显现。

本文将探讨如何利用大模型进行新能源功率预测,包括方法讲解、代码实现和实际案例演示。

二、大模型在新能源功率预测中的优势

大模型在新能源功率预测中具有以下独特优势:

  1. 强大的特征提取能力:大模型通过预训练已学习到丰富的时空特征表示,能够自动提取气象因素、历史功率等复杂特征

  2. 多模态数据处理&#x

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

非著名架构师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值