基于Matlab的图像处理②(图像增强技术,中值滤波,均值滤波)

这篇博客介绍了MATLAB中进行图像处理的一些基本函数,包括导入、显示图像,色彩直方图,调整对比度,分块显示以及导出图像等操作。重点讲述了中值滤波在去除图像噪声的应用,通过不同大小的模板展示了滤波效果,并通过代码实例展示了如何增加盐&胡椒噪声以及使用不同大小的中值滤波器进行滤波。实验结果显示,滤波器尺寸越大,滤波效果越明显,但可能导致图像细节模糊。
摘要由CSDN通过智能技术生成

目录

一.常用函数

1.导入图像

2.显示图像

3.显示图片色彩直方图

4.调整对比度

5.分块显示

6.导出图像

7.中值滤波

8.增加噪声

9.灰度函数

二.运行代码

三.效果


一.常用函数

1.导入图像

c=imread('E:\photo\3.jpg');//(‘’)里面是图片的文件路径+文件名称(带后缀的全名)

注:一定要根据自己图片文件路径和格式来修改括号中的内容

2.显示图像

imshow('E:\photo\3.jpg');//(‘’)里面是图片的文件路径+文件名称(带后缀的全名)

3.显示图片色彩直方图

figure,imhist(c);//这里的c是导图图像时开始图片赋予的一个变量

4.调整对比度

d=imadjust(c,[0.1,0.9],[]);//同样是把调整后的图像赋给一个变量d,中括号中的值根据需要调节,左侧值越小,会越亮。

5.分块显示

subplot(221),imshow(c);//分成2*2块,显示在第一块区域,显示的图像为c

6.导出图像

imwrite(图像变量,'图像位置+文件名+文件后缀');

7.中值滤波

medfilt(图像变量,【a,a】);%进行a*a模板的中值滤波

8.增加噪声

imnoise(图像变量,'salt&pepper',b);%b的值越大噪声越明显,通常取0.01-0.05

9.灰度函数

rgb2gray(a);

10.图像腐蚀

Imreode函数用于完成图像腐蚀,其常用调用形式如下:I2 = Imreode(I,SE);

参数说明:

  1. I为原始图像,可以是二值或灰度图像(对应于灰度腐蚀)。
  2. SE是由strel( )函数返回的自定义或者预设的结构元素对象。
  3. I2为腐蚀后的输出图像

11.构造函数

strel( )函数可以为各种常见形态学运算生成结构元素SE,当生成二值形态学使用的机构元素时,其调用形式入下。

SE = strel(shape,parameters);

  1. Shape指定了结构元素的形状,常用的有圆,矩形等;
  2. parmeters是和输入shape有关的参数。
  3. SE为得到的结构元素对象。

二:运行代码(滤波代码)

I=imread('E:\photo\3.jpg');
J=imnoise(I,'salt & pepper',0.05);
subplot(321),imshow(I);
subplot(322),imshow(J);
k1=medfilt2(J);
k2=medfilt2(J,[5,5]);
k3=medfilt2(J,[7,7]);
k4=medfilt2(J,[9,9]);
subplot(323),imshow(k1);
subplot(324),imshow(k2);
subplot(325),imshow(k3);
subplot(326),imshow(k4);
imwrite(I,'E:\photo\中值滤波1.jpg'); 
imwrite(J,'E:\photo\中值滤波2.jpg'); 
imwrite(k1,'E:\photo\中值滤波3.jpg'); 
imwrite(k2,'E:\photo\中值滤波4.jpg'); 
imwrite(k3,'E:\photo\中值滤波5.jpg'); 
imwrite(k4,'E:\photo\中值滤波6.jpg'); 


三.效果(滤波效果)

原图:

 

由此可以看出,当a值越大,滤波效果越明显,图像相对会越模糊。

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值