深度学习
文章平均质量分 76
蝴蝶也可以飞过沧海
硕士在读科研方向计算机视觉与模式识别具体研究图像检索
展开
-
【深度学习】Deep Bilateral Learning for Real-Time Image Enhancements
1. 简述:hdrnet是CNN在图像处理领域的成功实践,同时该框架的提出后,被成功的迁移到其他视觉领域,如降噪、风格迁移。当然在该论文中其主要作用是hdr,即图像的暗部亮部细节增强。论文:Deep Bilateral Learning for Real-Time Image Enhancementsgithub地址:https://github.com/google/hdrnet项目地址:https://groups.csail.mit.edu/graphics/hdrnet/2. 方原创 2020-12-04 18:56:48 · 1925 阅读 · 0 评论 -
【caffe】【遇到的问题】卷积参数group的使用
问题:mobilenetV1是基于tensorflow实现的,现在我需要将depthwise separable convolution利用caffe实现,应该怎么办呢?解决方法:使用卷积参数group实现。group对输入输出对应分组,默认为1,也就是说默认输出输入的所有通道各为一组。输出一个通道由输入所有通道进行卷积运算。如果我们把卷积group等于输入通道,输出通道等于输入通道便轻松实现了d...原创 2018-05-24 19:06:51 · 4506 阅读 · 4 评论 -
【caffe】如何计算模型相关参数量
1. 常见卷积层的参数量计算方法?这个ppt比较形象的说明了卷原创 2018-06-05 18:50:53 · 1449 阅读 · 0 评论 -
【caffe】SGD模式调参概念理解
1、SGD概念理解?2、caffe设置SGD的方法是什么?对应的公式是什么?原创 2018-06-05 19:48:42 · 2261 阅读 · 0 评论 -
【caffe】resnet网络的理解
1. resnet是什么?可见,残差就是说后面的层是由前面的层加上一组值得到的,这组值就是所谓的残原创 2018-05-30 18:51:53 · 1974 阅读 · 0 评论 -
【caffe】vgg16的官方网络协议很特别
vgg16的网络协议里面的层是layers,而我们常见的是layer。由于不是常见的layer,使用时难免会遇到一些问题。为了规避不必要的问题,我们把layers改写成layer。下面的两个协议分别是修改前后的协议:(仔细观察两者的差别)name: "VGG_ILSVRC_16_layers"layers { name: "data" type: DATA include { ...原创 2018-06-06 19:10:36 · 603 阅读 · 0 评论 -
【Caffe】默认打印出来的日志可以告诉我们些什么?
I0328 19:29:51.803539 2532 caffe.cpp:217] Using GPUs 0 //1. 运行模式:cpu或者gpuI0328 19:29:51.833237 2532 caffe.cpp:222] GPU 0: TITAN X (Pascal)I0328 19:29:54.729840 2532 solver.cpp:48] Initializing s...原创 2018-05-31 16:21:30 · 598 阅读 · 0 评论 -
【FDDB】人脸检测评测总结
1. FDDB:Face Detection Data Set and Benchmark。参考网址:http://vis-www.cs.umass.edu/fddb/ http://vis-www.cs.umass.edu/fddb/results.html(含评测相关代码) https://blog.csdn.ne...原创 2019-04-02 16:00:48 · 1206 阅读 · 2 评论 -
【caffe】编译相关
在一个新的服务器上编译caffe,总是会遇到,在以前的服务器可以编译通过,为什么新的服务器就编译不过了呢?因为环境变了,如果不是自己负责服务器,我们就应该学会根据服务器的环境配置,灵活的去调整Makefile的相关项:这个Makefile.config相关注释比较全面,可以在需要时,进行查阅:https://blog.csdn.net/jiajunlee/article/details...转载 2019-04-08 11:41:50 · 337 阅读 · 0 评论 -
【caffe】测试模型默认迭代次数为50个batch
当你训练好一个模型,利用caffe.exe进行测试时,你会发现不管你的batch_size设置的数值是多少,都只会测50个batch,这是由于/tools/caffe.cpp默认的数值为50,需要你从外部输入。caffe.cpp外部传入参数,如下图所示:假设你现在要测试50K幅图,你的网络协议里面设置的batchsize是50,那么你要设置的iterations:1000。通过如下命令进行测试:...原创 2018-05-23 15:25:45 · 1733 阅读 · 0 评论 -
【辅助脚本】caffemodel参数的读取与分析
# -*- coding: utf-8 -*-"""Author: FengFunction: read and analyze caffemodel paramsData: 2018/04/25"""import numpy as npimport sys import osnp.set_printoptions(threshold='nan') # 全部打印输出,不要出现省...原创 2018-04-25 18:47:57 · 998 阅读 · 0 评论 -
py-faster-rcnn测试流程解读
测试必备条件:训练环境 + 训练好的模型 + 已标定的测试数据。原创 2017-11-28 16:14:58 · 345 阅读 · 0 评论 -
windows环境下利用protobuf生成caffe.pb.h&caffe.pb.cc
1. protobuf下载:下载地址:https://github.com/google/protobuf/tags找到你需要的版本,进行下载,高版本的caffe会报错,我使用的是2.6.1。2. 解压下载到的红框文件,将protoc.exe拷贝到caffe.proto所在文件夹,编写一个.bat文件,内容如下:protoc.exe caffe.proto --cpp_ou原创 2017-12-28 16:42:49 · 2357 阅读 · 1 评论 -
【tensorflow】tensorflow安装(环境CPU+Windows)
安装参考网址:http://blog.csdn.net/Bear_Kai/article/details/78162144?locationNum=8&fps=1已验证可行!转载 2018-01-31 15:00:47 · 302 阅读 · 0 评论 -
【Caffe】Caffe框架初识
Caffe框架作者:贾扬清caffe框架参考:http://caffe.berkeleyvision.org/caffe源码下载:https://github.com/BVLC/caffecaffe上手参考:http://suanfazu.com/t/caffe/281MakeFile文件内容梳理参考:http://blog.csdn.net/thystar/article/details/508...原创 2018-03-01 15:12:41 · 918 阅读 · 0 评论 -
【Caffe】网络协议可视化分析工具
工具网址:https://dgschwend.github.io/netscope/#/editor工具说明:https://dgschwend.github.io/netscope/quickstart.htmlNetscope CNN Analyzer:卷积神经网络结构基于web的可视化分析工具。只支持Caffe的prototxt格式。以AlextNet为例:AlextNet的网络结构如下:n...原创 2018-04-17 16:33:38 · 1167 阅读 · 1 评论 -
【辅助脚本】删除训练过程生成的无用model
#-*-coding:utf-8-*-"""Author: Feng JinliFunction: Remove useless caffemodel.Date: 04/13/2018"""import osroot_path = "/home/fengjl/06_tools/caffeFaceV1.0/caffeFaceV1.0/examples/mnist/"file_nam...原创 2018-04-13 14:27:32 · 303 阅读 · 0 评论 -
【辅助脚本】caffe的训练与测试
#-*- coding: utf-8 -*-"""Author: Feng JinliFunction: train and test caffe modelDate: 04/13/2018 """import caffeimport os# GPU or CPUcaffe.set_device(0)caffe.set_mode_gpu()# Parse solver an...原创 2018-04-13 19:13:57 · 504 阅读 · 0 评论 -
【caffe】计算pooling层和convolution层输出图像大小
参考:https://blog.csdn.net/qq_27009517/article/details/79440262pooling层和convolution层的计算方法一样。1. 没有pad,计算方法如下:w_out = ceil((w_in-k+1)/s)2. 有pad,计算方式如下:w_out = ceil(w_in/s)w_out:输出图像宽度;w_in:输入图像宽度;k:核大小;s:...原创 2018-04-19 17:06:57 · 4631 阅读 · 1 评论