1. 简述:
hdrnet是CNN在图像处理领域的成功实践,同时该框架的提出后,被成功的迁移到其他视觉领域,如降噪、风格迁移。当然在该论文中其主要作用是hdr,即图像的暗部亮部细节增强。
论文:Deep Bilateral Learning for Real-Time Image Enhancements
github地址:https://github.com/google/hdrnet
项目地址:https://groups.csail.mit.edu/graphics/hdrnet/
2. 方法:
整个算法的流程,如下图所示:
<1> 原分辨率缩放到低分辨率[256,256],求取双边网格系数;
双边网格,最早用于对边缘敏感的图像降噪加速,双边滤波的加速算法由于其具有可微性被拓展到hdrnet。
local feature和global feature的融合也非常巧妙,实现了不同感受野的融合,增强了图像的特征描述。
<2> 引导图求取,由ccm/tone curvel和conv卷积组成,最后是一幅灰度图,用于求取每一个像素点对应的网格系数;
<3> slice,根据像素位置和导引图进行加权3DLUT,从而获取每个像素对应的仿射系数;
<4> apply coeffients,点对点进行affine变换。
参考:
1. https://www.bilibili.com/read/cv5788312