【深度学习】Deep Bilateral Learning for Real-Time Image Enhancements

1. 简述:

hdrnet是CNN在图像处理领域的成功实践,同时该框架的提出后,被成功的迁移到其他视觉领域,如降噪、风格迁移。当然在该论文中其主要作用是hdr,即图像的暗部亮部细节增强。

论文:Deep Bilateral Learning for Real-Time Image Enhancements

github地址:https://github.com/google/hdrnet

项目地址:https://groups.csail.mit.edu/graphics/hdrnet/

2. 方法:

整个算法的流程,如下图所示:

<1> 原分辨率缩放到低分辨率[256,256],求取双边网格系数;

双边网格,最早用于对边缘敏感的图像降噪加速,双边滤波的加速算法由于其具有可微性被拓展到hdrnet。

local feature和global feature的融合也非常巧妙,实现了不同感受野的融合,增强了图像的特征描述。

<2> 引导图求取,由ccm/tone curvel和conv卷积组成,最后是一幅灰度图,用于求取每一个像素点对应的网格系数;

<3> slice,根据像素位置和导引图进行加权3DLUT,从而获取每个像素对应的仿射系数;

<4> apply coeffients,点对点进行affine变换。

 

参考:

1. https://www.bilibili.com/read/cv5788312

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值