Origin快速拟合荧光寿命、PL Decay (TRPL)数据分析处理-方法二

1.先导入数据到origin

2.导入文件的时候注意:名字短的这个是,或者你打开后看哪个里面有800,因为我的激光重频是1.25Hz(应该是,不太确定单位是KHz还是MHz),所以对应的时间是800s。

3.选中两列直接画散点图,然后纵坐标取对数log

4.因为这个寿命的拟合得从最大值开始,但是前面是有一部分起始部分很低,我们直接选取拟合范围就行,点击这个区范围的按钮,然后双击右边这个曲线,会变成我图中这样,再拖动左边的线选最高点这个范围

5.范围选取好后开始拟合,分析-拟合-非线性拟合

6.category选第二个,然后function选decay3(你想用几指数就选哪个,灵活点)

7.然后点这个一步拟合到位就可以了

8.然后根据拟合出来的数据算Taverage就行了,

### 荧光寿命拟合曲线的方法 荧光寿命测量通常涉及单指数或多指数衰减模型来描述分子的发光特性。为了实现这一目标,数据处理拟合过程至关重要。 #### 单指数衰减模型 对于简单的荧光体系,可以采用单指数函数表示荧光强度随时间的变化: \[ I(t) = A \cdot e^{-t/\tau} + C \] 其中 \(A\) 表示振幅;\(\tau\)荧光寿命;\(C\) 代表背景信号[^1]。 #### 多指数衰减模型 更复杂的样品可能需要多组分模型来进行精确表征: \[ I(t)=\sum_{i=1}^{n}(A_i \cdot e^{-t/\tau_i})+C \] 这里引入多个不同寿命成分 (\(\tau_1,\tau_2,...,\tau_n)\),以及相应的权重系数 (Amplitude factors)。 #### 使用Origin进行数据分析 Origin是一款强大的科学绘图与数据分析软件,在生物医学研究领域广泛应用。针对荧光寿命实验的数据集,可以通过以下方式完成拟合工作: - **导入原始数据**:支持多种文件格式输入; - **预处理阶段**:去除噪声干扰、基线校正等前处理措施; - **选择合适的数学模型**:基于上述提到的一次或多次指数方程; - **执行非线性最小乘法优化算法**:自动调整参数直至获得最佳匹配度; - **评估拟合质量**:通过残差分布情况判断结果合理性,并计算标准误差范围内的置信区间估计值[^3]。 ```python import numpy as np from scipy.optimize import curve_fit def single_exp_decay(x, a, tau, c): """定义单指数衰减函数""" return a * np.exp(-x / tau) + c time_points = ... # 时间序列数组 intensity_values = ... # 对应时刻下的荧光强度读数 popt, pcov = curve_fit(single_exp_decay, time_points, intensity_values) print(f"Fitted parameters:\na={popt[0]}, τ={popt[1]}, c={popt[2]}") ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

火花怪怪

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值