并查集算法

所谓并查集就是查(Find)和并(Union)。(经常还要用到路径压缩)

1.Find(x):就是找x的节点。或者找x的上级。
2.Union(x,y) : 把x或者y做为y或x的节点或上级。

                    Find函数
int Pre[100];

int Find(int x){
int r=x;
while(Pre[r]!=r)      //判断r是不是根节点/或者判断r是不是祖先
r=Pre[r];                      // 在while循环找到r的根。
//进行路径压缩
                            //就是把一棵树分为两层,根节点和叶子。或者理解为把祖先的后代都看成儿子不要孙子。
int i=x,j;
while(i!=r){         //如果x不是祖先,就把x看成儿子。
j=Pre[i];

Pre[i]=r;                //把i的父亲看成祖先;
i=j;                //循环找i 的父亲,令i为i的父亲,然后循环把他们的父亲看成祖先。
}

return r;        //返回祖先。
}


                            2.Union函数

void Union(int x,int y){

int fx,fy;

fx=Find(x);

fy=Find(y);

if(fx!=fy)

Pre[fx]=fy;


}

可以参考一下这个:https://blog.csdn.net/liujian20150808/article/details/50848646

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值