深度学习
文章平均质量分 95
_23_
正在努力学AI的菜鸟
展开
-
PyTorch实例3——迁移学习
考虑到原始的 ResNet 具有较大的复杂性,在本次实验中,实际迁移的是一个具有 18 层的精简版的 ResNet。因为该实验选用的是蚂蚁和蜜蜂的图像数据,本身就很难识别,简单的卷积神经网络应付不了这种复杂的情况。同时,将 ResNet18 中最后的全连接层(fc)替换,构建一个包含 512 个隐含节点的全连接层,后接两个结点的输出层,用于最后的分类输出。使用 datasets 的 ImageFolder 方法就可以实现自动加载数据,因为数据集中的数据可能分别在不同的文件夹中,要让所有的数据一起加载。原创 2023-01-14 22:08:05 · 1762 阅读 · 3 评论 -
PyTorch实例2——文本情绪分类器
编写的函数,以句子为单位,将所有的积极情感的评论文本,全部转化为句子向量,并保存到数据集 dataset 中。过程:模型训练好后,利用校验集数据检测模型表现,如果误差和训练数据差不多,则说明模型泛化能力很强,否则就是模型出现了过拟合的现象。productId 为商品的 id,score 为评分,page 为对应的评论翻页的页码,pageSize 为总页数。另外,在每个隐含层神经元中,LSTM 多了一个 cell 的状态,起到了记忆的作用。将模型在整个测试集上运行,记录预测结果,并计算总的正确率。原创 2023-01-06 14:04:21 · 2093 阅读 · 0 评论 -
PyTorch实战1——预测未来某地区租赁单车的使用情况
其中,特征变量集合包括:年份(yr),是否节假日( holiday),温度(temp),湿度(hum),风速(windspeed),季节1~4(season),天气1~4(weathersit,不同天气种类),月份1~12(mnth),小时0~23(hr),星期0~6(weekday),它们是输入给神经网络的变量;考虑现实12.25是圣诞节,并且之后1.1是元旦节,人们的出行习惯会有很大不同,又因为训练样本只有两年长度,圣诞节前后的样本只有1次,所以没有办法对这个特殊假期的模式进行更准确的预测。原创 2023-01-04 12:58:25 · 632 阅读 · 0 评论 -
PyTorch基础部分
PyTorch基础知识的学习笔记原创 2023-01-03 23:21:26 · 395 阅读 · 0 评论