遗传算法综述(一、 遗传算法简介)

遗传算法的定义与简介:

        遗传算法(Genetic Algorithm,简称GA)起源于对生物系统所进行的计算机模拟研究,是一种随机全局搜索优化方法,它模拟了自然选择和遗传中发生的复制、交叉(crossover)和变异(mutation)等现象,从任一初始种群(Population)出发,通过随机选择、交叉和变异操作,产生一群更适合环境的个体,使群体进化到搜索空间中越来越好的区域,这样一代一代不断繁衍进化,最后收敛到一群最适应环境的个体(Individual),从而求得问题的优质解。

        遗传算法的思想源于自然界“自然选择”和“优胜劣汰”的进化规律,通过模拟生物进化中的自然选择和交配变异寻找问题的全局最优解。它最早由美国密歇根大学教授John H, Holland提出,现在已经广泛应用于各种工程领域的优化问题之中。

        其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;采⽤概率化的寻优方法,不需要确定的规则就能⾃动获取和指导优化的搜索空间,⾃适应地调整搜索方向。遗传算法以⼀种群体中的所有个体为对象,并利⽤随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。

遗传算法的历史回顾:

        从六十年代开始,密切根大学教授Holland 开始研究自然和人工系统的自适应行为,在这些研究中,他试图发展一种用于创造通用程序和机器的理论。通用程序和机器具有适应任意环境的能力,他意识到用群体方法搜索以及选择、交换等等操作策略的重要性。在六十年代中期至七十年代末期,基于语言智能和逻辑—数学智能的传统人工智能十分兴盛,而基于自然进化的思想则遭到怀疑和反对,Holland 及其数位博士生仍坚持了这一方向的研究。Bagley发明“遗传算法”一词并发表了第一篇有关遗传算法应用的论文,在他开创性的博士论文中采用双倍体编码,发展了与目前类似的复制、交换、突变、显性、倒位等基因操作,他还敏锐地察觉到防止早熟收敛的机理,并发展了自组织遗传算法的概念。与此同时,Rosen-berg在他的博士论文中进行了单细胞生物群体的计算机仿真研究,对以后函数优化的研究颇有启发,并发展了自适应交换策略。Cavicchio在1970年研究了基于遗传算法的子程序选择和模式识别问题。在模式识别问题上,采用整数编码,检索空间很大,他提出了以预选择策略保证群体多样性,对遗传算法参数进行中心控制的方法。同年,Weinberg研究了生物体的计算机仿真,他的贡献在于提出运用多层遗传算法来进行遗传算法的参数自优化。1968至1971年,Holland 提出了重要的模式理论,建议采用二进制编码。与前面几位博士不同,Holland首次采用二进制编码来研究函数优化问题,并指出了运用Gray码的一些优点,他研究了从生物系统引伸出的各种不同的选择和配对策略。1972年,Frantz的博士论文中研究了许多新的问题,如基因非线性(异位显性)现象,基因迁移操作及多点交换操作等,由于没有设计出诸如GA-deception之类合适的非线性优化问题,实验结果并不具备说服力。这一年,Holland的模式理论也渐趋成熟,但在编码策略上出现了至今仍执争论的二派,一派根据模式定理建议用尽量少的符号编码,一派以数值优化计算的方便和精度为准采用一个基因一个参数的方法,并把相应的基因操作改造成适合实数操作的形式,Bosworth,Zoo和Zeigler是后者的开创者,1975年竖立了遗传算法发展史上的两块里程碑,一是Holland出版了经典著作”Adaptation in Nature and Artificial System”,该书是作者十几年间许多思想及其实现的结晶,详细阐述了遗传算法的理论,并为其奠定了数学基础,发展了一整套模拟生物自适应系统的理论;二是DeJong 完成了具有指导意义的博士论文"An Analysis of the Behavior of a Class of Genetic Adaptive System" ,他深入领会了模式定理并做了大量严格的计算实验,给出了明确的结论,他还建立了著名的DeJong五函数测试平台,定义了性能评价标准,并以函数优化为例,对遗传算法的六种方案的性能及机理进行了详细实验和分析,他的工作成为后继者的范例并为以后的广泛应用奠定了坚实的基础。为克服 DeJong 的轮盘赌(随机)选择操作(或基因复制操作)中的随机误差,Brindle于1981年在她的博士论文中研究了六种复制策略。

        进入八十年代,随着以符号系统模仿人类智能的传统人工智能暂时陷入困境,神经网络、机器学习和遗传算法等从生物系统底层模拟智能的研究重新复活并获得繁荣,Gold-berg 在遗传算法研究中起着继往开来的作用,他在1983年的博士论文中第一次把遗传算法用于实际的工程系统——煤气管道的优化,从此,遗传算法的理论研究更为深入和丰富,应用研究更为广泛和完善,自1985年起,遗传算法及其应用国际会议每两年召开一次,有关人工智能的会议和刊物上大多有遗传算法的专题,Goldberg 的课本的出版有力地推动了遗传算法的传播。

        进入九十年代,以不确定性、非线性、时间不可逆为内涵,以复杂问题为对象的科学新范式得到学术界普遍认同,如广义进化综合理论。由于遗传算法能有效地求解属于NPC类型的组合优化问题及非线性多模型、多目标的函数优化问题,从而得到了多学科的广泛重视,一些学者也认识到求解复杂问题最优解是不现实的,故而寻求满意解,而遗传算法是最佳工具之一,生物进化的历史比任何数学证明都强有力,问题是遗传算法在吸收遗传学、进化论及分子生物学最新成果和在实验得到证明和证伪的同时本身也在进化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值