约瑟夫环问题

约瑟夫环问题

        约瑟夫环问题的原来描述为,设有编号为1,2,……,n的n(n>0)个人围成一个圈,从第1个人开始报数,报到m时停止报数,报m的人出圈,再从他的下一个人起重新报数,报到m时停止报数,报m的出圈,……,如此下去,直到所有人全部出圈为止。当任意给定n和m后,设计算法求n个人出圈的次序。  稍微简化一下。

        问题描述:n个人(编号0~(n-1)),从0开始报数,报到(m-1)的退出,剩下的人继续从0开始报数。求胜利者的编号。 

        思路:容易想到的就是用环链表来做,构建一个环链表,每个结点的编号为0, 1, ...... n-1。每次从当前位置向前移动m-1步,然后删除这个结点。最后剩下的结点就是胜利者。给出两种方法实现,一种是自定义链表操作,另一种用是STL库的单链表。不难发现,用STL库可以提高编写速度。

  1. struct ListNode  
  2. {  
  3.     int num;        //编号  
  4.     ListNode *next; //下一个  
  5.     ListNode(int n = 0, ListNode *p = NULL)   
  6.     { num = n; next = p;}  
  7. };  
  8.   
  9. //自定义链表实现  
  10. int JosephusProblem_Solution1(int n, int m)  
  11. {  
  12.     if(n < 1 || m < 1)  
  13.         return -1;  
  14.   
  15.     ListNode *pHead = new ListNode(); //头结点  
  16.     ListNode *pCurrentNode = pHead;   //当前结点  
  17.     ListNode *pLastNode = NULL;       //前一个结点  
  18.     unsigned i;  
  19.   
  20.     //构造环链表  
  21.     for(i = 1; i < n; i++)  
  22.     {  
  23.         pCurrentNode->next = new ListNode(i);  
  24.         pCurrentNode = pCurrentNode->next;  
  25.     }  
  26.     pCurrentNode->next = pHead;  
  27.   
  28.     //循环遍历  
  29.     pLastNode = pCurrentNode;  
  30.     pCurrentNode = pHead;  
  31.   
  32.     while(pCurrentNode->next != pCurrentNode)  
  33.     {  
  34.         //前进m - 1步  
  35.         for(i = 0; i < m-1; i++)  
  36.         {  
  37.             pLastNode = pCurrentNode;  
  38.             pCurrentNode = pCurrentNode->next;  
  39.         }  
  40.         //删除报到m - 1的数  
  41.         pLastNode->next = pCurrentNode->next;  
  42.         delete pCurrentNode;  
  43.         pCurrentNode = pLastNode->next;  
  44.     }  
  45.     //释放空间  
  46.     int result = pCurrentNode->num;  
  47.     delete pCurrentNode;  
  48.   
  49.     return result;  
  50. }  

  1. //使用标准库  
  2. int JosephusProblem_Solution2(int n, int m)  
  3. {  
  4.     if(n < 1 || m < 1)  
  5.         return -1;  
  6.   
  7.     list<int> listInt;  
  8.     unsigned i;  
  9.     //初始化链表  
  10.     for(i = 0; i < n; i++)  
  11.         listInt.push_back(i);  
  12.   
  13.     list<int>::iterator iterCurrent = listInt.begin();  
  14.     while(listInt.size() > 1)  
  15.     {  
  16.         //前进m - 1步  
  17.         for(i = 0; i < m-1; i++)  
  18.         {  
  19.             if(++iterCurrent == listInt.end())  
  20.                 iterCurrent = listInt.begin();  
  21.         }  
  22.         //临时保存删除的结点  
  23.         list<int>::iterator iterDel = iterCurrent;  
  24.         if(++iterCurrent == listInt.end())  
  25.             iterCurrent = listInt.begin();  
  26.         //删除结点  
  27.         listInt.erase(iterDel);  
  28.     }  
  29.   
  30.     return *iterCurrent;  
  31. }  

       上述方法的效率很低,其时间复杂度为O(mn)。当n和m很大时,很难在短时间内得出结果。不过好处就是可以给出n个人出圈的次序。只要在删除前保存一下即可。

       下面利用数学推导,如果能得出一个通式,就可以利用递归、循环等手段解决。下面给出推导的过程:

        (1)第一个被删除的数为 (m - 1) % n。

        (2)假设第二轮的开始数字为k,那么这n - 1个数构成的约瑟夫环为k, k + 1, k + 2, k +3, .....,k - 3, k - 2。做一个简单的映射。

             k         ----->  0 
             k+1    ------> 1 
             k+2    ------> 2 
               ... 
               ... 

             k-2    ------>  n-2 

        这是一个n -1个人的问题,如果能从n - 1个人问题的解推出 n 个人问题的解,从而得到一个递推公式,那么问题就解决了。假如我们已经知道了n -1个人时,最后胜利者的编号为x,利用映射关系逆推,就可以得出n个人时,胜利者的编号为 (x + k) % n。其中k等于m % n。代入(x + k) % n  <=>  (x + (m % n))%n <=> (x%n + (m%n)%n)%n <=> (x%n+m%n)%n <=> (x+m)%n

        (3)第二个被删除的数为(m - 1) % (n - 1)。

        (4)假设第三轮的开始数字为o,那么这n - 2个数构成的约瑟夫环为o, o + 1, o + 2,......o - 3, o - 2.。继续做映射。

             o         ----->  0 
             o+1    ------> 1 
             o+2    ------> 2 
               ... 
               ... 

             o-2     ------>  n-3 

         这是一个n - 2个人的问题。假设最后的胜利者为y,那么n -1个人时,胜利者为 (y + o) % (n -1 ),其中o等于m % (n -1 )。代入可得 (y+m) % (n-1)

         要得到n - 1个人问题的解,只需得到n - 2个人问题的解,倒推下去。只有一个人时,胜利者就是编号0。下面给出递推式:

          f [1] = 0; 
          f [ i ] = ( f [i -1] + m) % i; (i>1) 

        有了递推公式,实现就非常简单了,给出循环的两种实现方式。再次表明用标准库的便捷性。

  1. int JosephusProblem_Solution4(int n, int m)  
  2. {  
  3.     if(n < 1 || m < 1)  
  4.         return -1;  
  5.   
  6.     vector<int> f(n+1,0);  
  7.     for(unsigned i = 2; i <= n; i++)  
  8.         f[i] = (f[i-1] + m) % i;  
  9.   
  10.     return f[n];  
  11. }  
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值