$n \leq 200000$的abc字符串,现能进行如下变换零次或若干次:选一个$i<n$且$s_i \neq s_{i+1}$,把$s_i$和$s_{i+1}$替换成abc三个字母中除了这两个外的另一个。问$s$能变出多少字符串。
性质观察题,$S$能变成$T$:
$S$中字母如果全相同,$S$=$T$;
$S$中有相邻相同字母:令$a=0,b=1,c=2$,可以发现这个变换在$mod \ \ 3$下串总和是不变的。而这个变换一定会带来相邻相同字母,因此所有有相邻相同字母$T$都满足。
$S$中没有相邻相同字母:在上一种情况的答案+1.
证明未知。听说是归纳法。