AtCoder ARC094F Normalization

题目链接
题目大意:有一个由abc组成的串,可以选择相邻的两个不同的字符替换成第三种字符,问最多能形成多少种不同的串。

思路:求方案数,大概是DP。一开始苦思冥想了一大堆状态,但是没有一个和字符集{a,b,c}有联系的。这样就没法保证复杂度。后来发现,我们的abc可以对应到模数的012上,所以每一个变换在模3下的和是不变的,所以我们总结出规律:s中有无相邻相同的字符会对答案有影响,故设计状态如下:f[i][j][k][p]表示前i位,前i位的和模3意义下是j,这一位的是k,是否有相邻的两位相同。
就有如下转移:枚举这一位和上一位,分别从相邻相同和不相同两个地方转移即可。

#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<map>
#include<vector>
#include<ctime>
#include<stack>
#define mp make_pair
#define pa pair<int,int>
#define INF 0x3f3f3f3f
#define inf 0x3f
#define fi first
#define se second
#define pb push_back
#define ll long long
#define ull unsigned long long

using namespace std;

inline ll read()
{
    long long f=1,sum=0;
    char c=getchar();
    while (c<'0' || c>'9')
    {
        if (c=='-') f=-1;
        c=getchar();
    }
    while (c>='0' && c<='9')
    {
        sum=sum*10+c-'0';
        c=getchar();
    }
    return sum*f;
}
const int MAXN=200010;
const int Mod=998244353;
char s[MAXN];
int f[MAXN][3][3][2];
int main()
{
    scanf("%s",s+1);
    int n=strlen(s+1);
    if (n<=3)
    {
        if (n==1)
            cout<<1;
        else if (n==2)
        {
            if (s[1]==s[2])
                cout<<1;
            else
                cout<<2;
        }
        else
        {
            if (s[1]==s[2] || s[2]==s[3])
            {
                if (s[1]==s[2] && s[2]==s[3])
                    cout<<1;
                else 
                    cout<<6;
            }
            else
            {
                if (s[1]==s[3])
                    cout<<7;
                else
                    cout<<3;
            } 
        }
        return 0;
    }
    int sum=0,tot=0;
    for (int i=2;i<=n;i++)
        sum+=(s[i]==s[i-1]),tot+=s[i]-'a';
    tot+=s[1]-'a';
    tot%=3;
    if (sum==n-1)
    {
        cout<<1;
        return 0;
    }
    int ans=!sum;
    f[1][1][1][0]=f[1][2][2][0]=f[1][0][0][0]=1;
    for (int i=2;i<=n;i++)
        for (int j=0;j<=2;j++)
            for (int k=0;k<=2;k++)
                for (int p=0;p<=2;p++)
                {
                    int last=(j-k+3)%3;
                    f[i][j][k][1]+=f[i-1][last][p][1];
                    f[i][j][k][1]%=Mod;
                    if (k==p)
                        f[i][j][k][1]+=f[i-1][last][p][0];
                    else
                        f[i][j][k][0]+=f[i-1][last][p][0];
                    f[i][j][k][1]%=Mod,f[i][j][k][0]%=Mod;
                }
    for (int i=0;i<=2;i++)
        ans+=f[n][tot][i][1],ans%=Mod;
    cout<<ans;
    return 0;
}

对于n≤3,需要暴力计算,手玩分情况讨论即可。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值