题目链接
题目大意:有一个由abc组成的串,可以选择相邻的两个不同的字符替换成第三种字符,问最多能形成多少种不同的串。
思路:求方案数,大概是DP。一开始苦思冥想了一大堆状态,但是没有一个和字符集{a,b,c}有联系的。这样就没法保证复杂度。后来发现,我们的abc可以对应到模数的012上,所以每一个变换在模3下的和是不变的,所以我们总结出规律:s中有无相邻相同的字符会对答案有影响,故设计状态如下:f[i][j][k][p]表示前i位,前i位的和模3意义下是j,这一位的是k,是否有相邻的两位相同。
就有如下转移:枚举这一位和上一位,分别从相邻相同和不相同两个地方转移即可。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<algorithm>
#include<queue>
#include<cstdlib>
#include<map>
#include<vector>
#include<ctime>
#include<stack>
#define mp make_pair
#define pa pair<int,int>
#define INF 0x3f3f3f3f
#define inf 0x3f
#define fi first
#define se second
#define pb push_back
#define ll long long
#define ull unsigned long long
using namespace std;
inline ll read()
{
long long f=1,sum=0;
char c=getchar();
while (c<'0' || c>'9')
{
if (c=='-') f=-1;
c=getchar();
}
while (c>='0' && c<='9')
{
sum=sum*10+c-'0';
c=getchar();
}
return sum*f;
}
const int MAXN=200010;
const int Mod=998244353;
char s[MAXN];
int f[MAXN][3][3][2];
int main()
{
scanf("%s",s+1);
int n=strlen(s+1);
if (n<=3)
{
if (n==1)
cout<<1;
else if (n==2)
{
if (s[1]==s[2])
cout<<1;
else
cout<<2;
}
else
{
if (s[1]==s[2] || s[2]==s[3])
{
if (s[1]==s[2] && s[2]==s[3])
cout<<1;
else
cout<<6;
}
else
{
if (s[1]==s[3])
cout<<7;
else
cout<<3;
}
}
return 0;
}
int sum=0,tot=0;
for (int i=2;i<=n;i++)
sum+=(s[i]==s[i-1]),tot+=s[i]-'a';
tot+=s[1]-'a';
tot%=3;
if (sum==n-1)
{
cout<<1;
return 0;
}
int ans=!sum;
f[1][1][1][0]=f[1][2][2][0]=f[1][0][0][0]=1;
for (int i=2;i<=n;i++)
for (int j=0;j<=2;j++)
for (int k=0;k<=2;k++)
for (int p=0;p<=2;p++)
{
int last=(j-k+3)%3;
f[i][j][k][1]+=f[i-1][last][p][1];
f[i][j][k][1]%=Mod;
if (k==p)
f[i][j][k][1]+=f[i-1][last][p][0];
else
f[i][j][k][0]+=f[i-1][last][p][0];
f[i][j][k][1]%=Mod,f[i][j][k][0]%=Mod;
}
for (int i=0;i<=2;i++)
ans+=f[n][tot][i][1],ans%=Mod;
cout<<ans;
return 0;
}
对于n≤3,需要暴力计算,手玩分情况讨论即可。