牛客寒假算法基础集训营3 - B 处女座的比赛资格 拓扑排序+记忆化搜索

题目链接

题意:一个有向无环图( D A G DAG DAG 图),每条边有三种权重,经费负责人根据其中两种权重,按最小花费给处女座经费,处女座拿着经费按两种权重,走最小花费的路径,问处女座的经费的消耗情况

思路:由于存在负权边,所以没法用 d j dj dj 来求最短路,但是由于是 D A G DAG DAG 图,所以可以按拓扑序来求解最小花费,然后判断两种花费情况即可。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<string>
#include<map>
#include<vector>
#include<queue>
#include<deque>
#include<climits>
using namespace std;
#define ll long long
#define PI acos(-1)
#define INF 0x3f3f3f3f
#define NUM 100005
#define debug true
#define lowbit(x) ((-x)&x)
#define ffor(i,d,u) for(int i=(d);i<=(u);++i)
#define _ffor(i,u,d) for(int i=(u);i>=(d);--i)
#define mst(array,Num,Kind,Count) memset(array,Num,sizeof(Kind)*(Count))
const ll mod = 9999973;
template <typename T>
void read(T& x)
{
    x=0;
    char c;T t=1;
    while(((c=getchar())<'0'||c>'9')&&c!='-');
    if(c=='-'){t=-1;c=getchar();}
    do(x*=10)+=(c-'0');while((c=getchar())>='0'&&c<='9');
    x*=t;
}
template <typename T>
void write(T x)
{
    int len=0;char c[21];
    if(x<0)putchar('-'),x*=(-1);
    do{++len;c[len]=(x%10)+'0';}while(x/=10);
    _ffor(i,len,1)putchar(c[i]);
}
namespace Solve
{
int T, n, m;
int head[NUM], edgenum;
struct edge
{
    int to, next;
    ll w1, w2;
} e[NUM << 1];
ll dist1[NUM], dist2[NUM];
int du[NUM];
bool flag[NUM];
inline void BFS()//按拓扑序记忆化搜索
{
    int x, y;
    queue<int> q;
    q.push(1);
    dist1[1] = dist2[1] = 0;
    while (!q.empty())
    {
        x = q.front(), q.pop();
        for (int i = head[x]; i != 0; i = e[i].next)
        {
            y = e[i].to;
            --du[y];
            dist1[y] = min(dist1[y], dist1[x] + e[i].w1);
            dist2[y] = min(dist2[y], dist2[x] + e[i].w2);
            if (!du[y])
            {
                if (y == n)
                    return;
                q.push(y);
            }
        }
    }
}
inline void ToPo()//求从1为起点的所有路径上点的拓扑序
{
    int x, y;
    queue<int> q;
    q.push(1);
    flag[1] = true;
    while (!q.empty())
    {
        x = q.front(), q.pop();
        for (int i = head[x]; i != 0; i = e[i].next)
        {
            y = e[i].to;
            if (flag[y] == false)
                flag[y] = true, q.push(y);
        }
    }
    ffor(i, 1, n)
    {
        if (!flag[i])
            continue;
        for (int j = head[i]; j != 0; j = e[j].next)
        {
            if (!flag[e[j].to])
                continue;
            ++du[e[j].to];
        }
    }
}
inline void AC()
{
    ll x, y, z;
    read(T);
    while(T--)
    {
        mst(flag, false, bool, n + 1), mst(du, 0, int, n + 1), mst(head, 0, int, n + 1);
        read(n), read(m);
        edgenum = 0;
        ffor(i, 1, n)
            dist1[i] = dist2[i] = 99999999999999999;
        ffor(i, 1, m)
        {
            read(x), read(y);
            e[++edgenum].to = y, e[edgenum].next = head[x], head[x] = edgenum;
            read(z), read(x), read(y);
            e[edgenum].w1 = z - x, e[edgenum].w2 = z - y;
        }
        ToPo();
        BFS();
        if (dist1[n] < 0)
            dist1[n] = 0;
        if (dist2[n] < 0)
            dist2[n] = 0;
        if (dist1[n] > dist2[n])
        {
            puts("rip!!!");
            write(dist1[n] - dist2[n]);
            putchar('\n');
        }
        else
        {
            if (dist1[n] == dist2[n])
            {
                puts("oof!!!");
            }
            else
            {
                puts("cnznb!!!");
                write(dist2[n] - dist1[n]);
                putchar('\n');
            }
        }
    }
}
}
int main()
{
    Solve::AC();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值