题意:有一个 n ∗ n n*n n∗n 大小的矩阵,每个格点上都有一种颜色,0表示白色,1表示黑色,可以进行两种操作,交换某两行颜色或者某两列颜色。问是否能通过若干次这两种操作使得矩阵的主对角线(从左上角到右下角)上的格点颜色均为黑色。
思路:主要是建图了
可以把每一行每一列分别当作一个点,此时若第 i i i 行第 j j j 列的格点为黑色,就相当于 i i i 和 j j j 之间存在一条无向边,白色则没有,这样则建成一个二分图。
对于游戏的结束状态下,每个主对角线上的格点都是黑色,比如(1,1)的格点可以认为是从第 i i i 行第 j j j 列的格点移过去的。以此类推,所以就是求是否存在 n n n 个格点它们都是黑色且行和列互相都不同。显然就是求这个二分图的最大匹配是否为 n n n 。
#include<cstdio>
#include<vector>
#include<cstring>
#include<string>
#include<queue>
using namespace std;
#define ffor(i,d,u) for(int i=(d);i<=(u);++i)
#define _ffor(i,u,d) for(int i=(u);i>=(d);--i)
#define NUM 205
int T;
int n;
vector<int> e[NUM];
int l1[NUM], l2[NUM];
int se1[NUM], se2[NUM];
bool vis[NUM];
inline bool HK()
{
int ll = NUM, x, j, y;
memset(l1, -1, sizeof(int) * (n + 1)), memset(l2, -1, sizeof(int) * (n + 1));
queue<int> q;
for (int i = 1; i <= n; ++i)
{
if (se1[i] == 0)
{
q.push(i);
l1[i] = 0;
}
}
while (!q.empty())
{
x = q.front(), q.pop();
if (l1[x] > ll)
break;
j = e[x].size();
for (int i = 0; i < j; ++i)
{
y = e[x][i];
if (l2[y] == -1)
{
l2[y] = l1[x] + 1;
if (se2[y] == 0)
ll = l2[y];
else
{
l1[se2[y]] = l2[y] + 1;
q.push(se2[y]);
}
}
}
}
return ll != NUM;
}
bool dfs(const int &vertex)
{
int j = e[vertex].size(), x;
for (int i = 0; i < j; ++i)
{
x = e[vertex][i];
if (vis[x] == true || l2[x] != l1[vertex] + 1)
continue;
vis[x] = true;
if (se2[x] == 0 || dfs(se2[x]))
{
se2[x] = vertex;
se1[vertex] = x;
return true;
}
}
return false;
}
inline void AC()
{
int x;
int ans;
scanf("%d", &T);
while (T--)
{
ans = 0;
scanf("%d", &n);
memset(se1, 0, sizeof(int) * (n + 1));
memset(se2, 0, sizeof(int) * (n + 1));
ffor(i, 1, n)
e[i].clear();
ffor(i, 1, n)
ffor(j, 1, n)
{
scanf("%d", &x);
if (x == 1)
e[i].push_back(j);
}
while(HK())
{
memset(vis, false, sizeof(bool) * (n + 1));
ffor(i, 1, n) if (se1[i] == 0 && dfs(i))++ ans;
}
if (ans == n)
puts("Yes");
else
puts("No");
}
}
int main()
{
AC();
return 0;
}